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Abstract

Continual Test-Time Adaptation (CTTA) is crucial for de-
ploying models in real-world applications with unseen,
evolving target domains and restricted access to source
data. Existing CTTA methods, however, often rely on source
data or prototypes, limiting their applicability in privacy-
sensitive and resource-constrained settings. Additionally,
these methods suffer from long-term forgetting, which de-
grades performance on previously encountered domains as
target domains shift. To address these challenges, we pro-
pose SloMo-Fast, a source-free, dual-teacher CTTA frame-
work designed for enhanced adaptability and generaliza-
tion. SloMo-Fast includes two complementary teachers:
the Slow-Teacher, which adapts gradually to ensure robust
generalization by tracking an exponential moving average
of the student’s parameters, and the Fast-Teacher, which
quickly adapts to new domains by constructing prototypes
from high-confidence test samples, gathering knowledge
across domains. This efficiently approach preserves knowl-
edge of past domains, adapts efficiently to new ones, and re-
duces computational complexity by relying solely on batch
normalization updates. Our extensive experimental re-
sults demonstrate that SloMo-Fast consistently outperforms
state-of-the-art methods across CTTA benchmarks, achiev-
ing mean error rates of 15.79% on CIFAR10-C, 27.01%
on CIFAR100-C, and 54.2% on ImageNet-C in the Con-
tinual TTA setting, significantly outperformed state-of-the-
art methods. Additionally, SloMo-Fast achieves significant
performance improvements in Mixed Domain and our pro-
posed new benchmark Mixed domain comes after Continual
Domain scenarios along with Cyclic repeatation in con-
tinual test time adaptation setting, indicating its ability to
learn generalized representations across domains.

*Corresponding author: iftee1807002@gmail.com
†Work does not relate to position at Amazon.

1. Introduction

Adapting models to changing environments is crucial for
deploying autonomous systems in real-world scenarios.
Continual Test-Time Adaptation (CTTA) has emerged as
a vital area of research, addressing the need for models
to adapt continuously to dynamically changing and un-
known domains. This capability is particularly significant
in fields like autonomous driving, healthcare, and robotics,
where systems must handle evolving conditions without
prior knowledge of the changes [3, 21].

Test-Time Adaptation (TTA) methods such as TENT
[18], MEMO [24], and EATA [13] focus on adapting mod-
els to a single domain. In contrast, CTTA is designed to
handle sequences of domains over time, making it suitable
for applications like self-driving cars, where weather, light-
ing, and road conditions change unpredictably [9].

Although there are a number of recent works on CTTA
[2, 5, 6, 10–12, 16, 17, 19, 22, 23], there remain significant
open research challenges to make it practical and effective
for real-world applications. Models must efficiently adapt
to evolving data streams in a source-free setting while pre-
serving knowledge from the source domain. Furthermore,
robust generalization is essential to avoid forgetting previ-
ously encountered domains, as earlier test-time conditions
may recur. Many approaches depend on pseudo-labeling
within teacher-student frameworks, where ensuring the ac-
curacy and robustness of pseudo-labels is critical. Address-
ing these challenges is key to unlocking the full potential of
CTTA for real-world applications.

To address key CTTA challenges, some methods (e.g.,
Robust Mean Teacher (RMT) [2] and domain-specific block
selection [22]) utilize source prototypes or stored represen-
tations from the source domain to guide model adaptation at
test time. These prototypes help retain domain-specific fea-
tures, improving the model’s performance with target do-
main shifts. However, in real-world applications, access to
source data or prototypes is often restricted due to privacy
concerns [3], storage limitations, or practical constraints re-
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lated to data transmission and memory capacity [13, 21],
which limits the applicability of these methods in privacy-
sensitive settings such as healthcare.

In fully source-free settings, some methods aim to pre-
vent catastrophic forgetting of the source domain. For ex-
ample, CoTTA [19] introduces stochastic restoration of the
source model, which is effective for single-domain adapta-
tion. However, CoTTA has limitations: it adapts only one
domain at a time, and its stochastic restoration approach can
cause the model to forget information about previously en-
countered test-time domains. Other recent works, such as
ROID [11], continuously ensemble parameters from both
the source and target models to retain information from
past domains. While effective in some continual settings,
ROID’s approach does not address real-world CTTA sce-
narios where domains may repeat over time (e.g., in au-
tonomous driving or UAV applications, where weather pat-
terns can recur). Additionally, most CTTA models are not
evaluated under conditions where new data from previously
seen domains may arrive out of sequence, which is a com-
mon scenario in real applications.

Finally, the performance of self-training-based teacher-
student CTTA models (e.g., [19, 22, 23]) relies heavily on
the quality of pseudo-labels produced by the teacher model.
Although state-of-the-art self-training methods have shown
promise, they are susceptible to noisy pseudo-labels. High-
entropy samples can produce noisy gradients, potentially
disrupting model adaptation in continual settings. More-
over, when adapting to long sequences of domains, mod-
els can develop biases [11]. To address these issues, [11]
employs diversity and certainty-based weighting. However,
generating robust pseudo-labels remains an open challenge
for teacher-student-based CTTA architectures.

To address the challenges in CTTA, we propose a dual
teacher- one student-based framework, SloMo-Fast, that
eliminates the need for source data while enhancing adapt-
ability and generalization (Figure 1). SloMo-Fast em-
ploys a dual-teacher approach: the Fast-Teacher (T1) adapts
quickly to new domains, while the Slow-Teacher (T2)
adapts gradually to ensure robust generalization (Figure 2).
Unlike existing methods, our framework updates models
solely through batch normalization, significantly reducing
computational complexity. A key novelty is using class-
wise prototypes to capture entropy-based confident feature
representations across domains, which are then used to re-
fine the Slow-Teacher through contrastive learning. To
maintain generalization during prolonged exposure to a sin-
gle domain, the Slow-Teacher’s weights are periodically re-
stored from the source model. This dual-teacher design en-
ables effective adaptation to current domains while preserv-
ing knowledge of previously encountered ones, ensuring
reliable pseudo-labels and robust performance in dynamic,
continually evolving real-world environments.

Our extensive experimental results demonstrate that
SloMo-Fast consistently outperforms state-of-the-art meth-
ods across various CTTA benchmarks, including CIFAR10-
C, CIFAR100-C, and ImageNet-C. In the Continual TTA
setting, SloMo-Fast achieves mean error rates of 15.79%
on CIFAR10-C, 27.01% on CIFAR100-C, and 54.2% on
ImageNet-C, significantly outperforming methods such as
TENT-cont. (20.0% on CIFAR10-C, 62.2% on CIFAR100-
C, 82.5% on ImageNet-C), RoTTA (19.3%, 34.8%, 78.1%),
and CoTTA (16.5%, 32.8%, 76.0%) on the respective
datasets. In the Mixed Domain and Mixed After Contin-
ual Domain scenarios, SloMo-Fast achieves error rates of
28.0% on CIFAR10-C, 33.5% on CIFAR100-C, and 54.2%
on ImageNet-C, again outperforming all competing meth-
ods. These results highlight SloMo-Fast’s ability to adapt
efficiently and generalize effectively, setting new bench-
marks for CTTA performance.

The key contributions of our work are as follows:

• We propose SloMo-Fast, a novel dual-teacher CTTA
framework that eliminates the need for source data while
enhancing adaptability and generalization. The Fast-
Teacher (T1) adapts quickly to new domains, while
the Slow-Teacher (T2) ensures robust generalization by
adapting gradually.

• SloMo-Fast solely uses batch normalization to update pa-
rameters, thus significantly reducing computational com-
plexity.

• We introduce a novel entropy-aware prototype prioritiza-
tion approach to refine the Slow-Teacher for learning gen-
eralized representations across domains.

• Our extensive experiments demonstrate that SloMo-
Fast achieves state-of-the-art performance in the Contin-
ual TTA setting, with mean error rates of 15.79% on
CIFAR10-C, 27.01% on CIFAR100-C, and 54.2% on
ImageNet-C, outperforming state-of-the-art methods.

• Additionally, SloMo-Fast outperforms state-of-the-art
methods in the Mixed Domain and Mixed After Con-
tinual Domain scenarios, achieving error rates of 28.0%
on CIFAR10-C, 33.5% on CIFAR100-C, and 54.2% on
ImageNet-C.

2. Related Works

In this section, we describe the works on Test-time Adapta-
tion (TTA) models. Then, we provide summary of Contin-
ual Test Time Domain Adaptation (CTTA) models followed
by their experimental setting such as gradual adaptation.

2.1. Test-time Adaptation (TTA)
TENT [18] introduced one of the earliest approaches to
fully test-time adaptation by minimizing entropy with re-
spect to the batch normalization parameters, enabling mod-
els to adapt to a single-target domain without requiring
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Figure 1. Overview of CTTA approaches with teacher-student models and contrastive learning. SlowMo-FAST (on the right) integrates a
second teacher model and dynamically generates prototypes at test time without requiring source data.

source data. MEMO [24] extended this concept by in-
troducing test-time augmentations, encouraging the model
to make invariant predictions across different augmented
views of the same test data. AdaContrast [1] approached
the problem of domain adaptation with contrastive learning,
which focuses on maintaining consistency within the tar-
get domain by refining pseudo-labels using soft voting from
nearest neighbors in the target feature space. EATA [13] de-
veloped a robust approach to test-time adaptation through
entropy-based sample selection, where reliable and diverse
samples are used to guide model updates while unreliable
samples are filtered out. To prevent catastrophic forgetting,
EATA employed elastic weight consolidation. SAR [14] fo-
cused on stabilizing online model updates during test-time
adaptation in dynamic environments.

2.2. Continual Test Time Adaptation (CTTA)

CoTTA [19] employed a teacher-student framework to ad-
dress the challenge of continual test-time adaptation in
non-stationary environments. EcoTTA [16] introduced a
memory-efficient approach to continual test-time adaptation
by leveraging meta-networks and self-distilled regulariza-
tion. RoTTA [23] built on this approach by introducing a
time-aware reweighting strategy that takes into account the
timeliness and uncertainty of samples in dynamic environ-
ments. DeYo [5] proposed a novel approach to sample se-
lection with a new confidence metric, Pseudo-Label Proba-
bility Difference (PLPD). Domain-Specific Block Selection
and Paired-View Pseudo-Labeling (DPLOT) [22] advanced
the idea of fine-tuning specific parts of the network during
test-time adaptation. CMF [6] introduced continual mo-
mentum filtering (CMF) to handle catastrophic forgetting

during continual test-time adaptation. BECoTTA [4] took a
step further by selectively captures domain-specific knowl-
edge through a set of low-rank experts, which are updated
dynamically to accommodate new domains. VIDA [10] fo-
cused on addressing the trade-off between adaptability and
catastrophic forgetting in dynamic environments by intro-
ducing high-rank and low-rank domain adapters (ViDAs).
Lastly, Parameter-Selective Continual Test-Time Adapta-
tion (PSMT) [17] introduced a method that selectively up-
dates only certain parameters of the network to prevent
overfitting during continual adaptation.

2.3. CTTA with Gradual/Mixed settings

RMT [2] focused on continual and gradual domain shifts,
introducing a robust mean teacher model that leverages
contrastive learning to pull the target domain closer to the
source domain. GTTA [12] tackled the issue of gradual do-
main shift by creating intermediate domains through mixup
and lightweight style transfer, addressing both gradual and
abrupt domain changes to prevent error accumulation over
long test sequences. Universal test-time adaptation (ROID)
[11] proposed a new approach for continual and mixed set-
ting. It presents a universal test-time adaptation (TTA) ap-
proach aimed at improving model robustness across vari-
ous environmental conditions by addressing challenges like
model bias, catastrophic forgetting, and class prior shifts.
Its methodology includes weight ensembling, certainty and
diversity weighting, and an adaptive prior correction mech-
anism to balance model generalization with domain-specific
adaptations. The setup focuses on continually adapting the
model through normalization layer adjustments, such as us-
ing group or layer normalization instead of batch normal-
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ization.

2.4. Architecture Evolution
CoTTA [19] employs a teacher-student framework where
the student model is updated based on the pseudo-labels
generated by the teacher model. The teacher model, in turn,
is updated using the Exponential Moving Average (EMA)
of the student parameters. While CoTTA demonstrates ef-
fective adaptation, it suffers from catastrophic forgetting
and lacks the ability to retain long-term domain knowledge.

To address this limitation, RMT [2] introduces source
prototypes and utilizes contrastive loss between the source
class prototypes and test-time inputs. However, relying on
source prototypes is often impractical in real-world scenar-
ios due to their rarity and unavailability in many applica-
tions.

In contrast, our SloMo-Fast framework introduces a sec-
ond teacher model that is more domain-generalized. In-
stead of using source prototypes, SloMo-Fast constructs
class prototypes from confident test samples. This approach
eliminates the dependence on source data while enabling
long-term retention of domain knowledge, ensuring robust
adaptation and generalization across dynamic and evolving
domains.

3. Methodology

3.1. Overview
We consider the task of adapting a pre-trained model to
perform effectively in a continuously evolving target do-
main. The initial model, denoted as fθ0 with parameters
θ0 , has been trained on a source dataset (Xs, Y s) . Our
objective is to enhance this model’s performance during in-
ference in a dynamic environment, where data distributions
(domain) change over time, without access to the source
data. Concretely, at time step t, the model receives a new
target data xt as input and is required to generate a pre-
diction fθt(xt). Simultaneously, the model must adapt its
parameters θt → θt+1 to improve its performance for sub-
sequent data points. The distribution of the incoming data
changes over time and the model is evaluated based on its
real-time predictions under this changing distribution.

Fig. 2 gives an overview of our proposed method, which
incorporates two teacher models and a student model. All
three models share the same architecture, comprising a fea-
ture extractor and a classifier. They are initialized with the
same pre-trained weigths, θ0. The models differ in their
update strategies. The student model S, with weights θS ,
is updated using a combination of symmetric cross-entropy
and differential losses, leveraging pseudo-labels generated
from both teacher models. The fast-teacher model, T1, up-
dates its weights, θT1

, using an exponential moving aver-
age (EMA) of the student model’s weights, which provides

a smoother version of the student’s learning process. In
contrast, the slow-teacher model, T2, initially updates its
weights, θT2

, by optimizing a combination of contrastive
loss, mean squared error (MSE) loss, and information max-
imization loss, enabling T2 to learn domain-invariant fea-
tures. Afterward, its parameters are updated by taking the
exponential moving average of the student model at each
time step. This two-teacher framework offers complemen-
tary supervision to the student model, effectively enhancing
adaptation and stability across continually shifting distribu-
tions. The following subsections detail our proposed ap-
proach: selft-training with dual teacher (3.2), slow teacher
(T2) model training (3.3), and prediction ensembling (3.4).

3.2. Self-training with Dual Teacher
For an incoming test sample xt at time step t, the stu-
dent model S aims to minimize the discrepancy between
its own predictions and those generated by the teacher
models T1 and T2. Rather than using the standard cross-
entropy for discrepancy minimization, we use symmetric
cross-entropy[20], which was originally proposed to ad-
dress noisy labels and has been shown to exhibit better gra-
dient properties compared to standard cross-entropy[2]. For
two distributions p and q, the symmetric cross-entropy is
defined as:

LSCE(p, q) = −
C∑

c=1

p(c) log q(c)−
C∑

c=1

q(c) log p(c) (1)

where C is the number of classes, p(c) and q(c) repre-
sents the probability of class c under distribution p and q,
respectively. The training objective for the student model
S, leveraging predictions from teacher models T1 and T2,
results in the following self-training loss:

LST (xt) =LSCE(fθS (xt), fθT1
(xt))+

LSCE(fθS (xt), fθT2
(xt)) (2)

After updating the student model S using LST , the pa-
rameters of the teacher model T1 are updated through EMA
as follows:

θt+1
T1

= αθtT1
+ (1− α)θt+1

S (3)

Here, α is a smoothing factor.

3.3. Domain Generalized (T2) Model Training
Entropy-based Feature Selection: During the adaptation
process, we use feature representations of incoming test
samples obtained from T1 to maintain a fixed-size priority
queue for each class. In the absence of ground-truth labels,
we rely on pseudo labels to assign class membership for
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Figure 2. The SlowMo-FAST framework comprises a dual-teacher and student model. The fast teacher T1 quickly adapts to the current
domain by taking the exponential moving average of the student. Confident feature vectors from T1 are used to construct robust class
prototypes via a priority queue, which refine the slow teacher T2 through contrastive learning. This enables T2 to learn domain-invariant
representations while preserving knowledge from previous domains.

each feature representation. We define pseudo label for a
test sample xt as:

ŷT1
= argmax

c
yT1

(c) (4)

where yT1
(c) is the prediction for c-th class obtained

from T1 for the test sample. This class-wise priority queue
is then used to construct class prototypes, with each queue
storing features and their associated entropy values up to a
maximum size K. To select the most confident features, we
prioritize features with lower entropy values in their predic-
tions, ensuring the priority queue retains high-confidence
features for constructing robust prototypes. The entropy of
the prediction is defined as:

H(yT1) = −
C∑

c=1

yT1(c) log(yT1(c)) (5)

where C is the number of classes.
Periodically, features with the lowest entropy for each

class are removed, allowing new, potentially less confident
features from different domains to be included in the
priority queue. This approach ensures that the priority
queue maintains diverse representations from all domains.
The complete process is outlined in the supplementary
materials.

Prototype Generation: We utilize confident feature
representations stored in the priority queue to generate

class prototypes. Instead of simply taking the mean, we
compute a weighted average, where the weight is the
inverse of the entropy, normalized to ensure consistency.
This approach ensures that more confident feature vectors,
contribute more to the prototype, making it a representative
feature for the corresponding class. Given the priority
queue Qc for class c, the prototype for that class, Pc, is
calculated as:

Pc =
1

w

∑
(z,H(z))∈Qc

wzz, (6)

where z denotes a stored feature, H(z) is the en-
tropy of the prediction corresponding to that feature, and
wz = 1

H(z) . The normalization factor, w =
∑

(z,H(z))∈Qc

wz.

Contrastive Learning with Class Prototype: Con-
trastive learning with class prototypes enables domain-
generalized feature learning by pulling samples from the
same class across different domains towards a shared pro-
totype while pushing away samples from different classes.
During test time, we first update the priority queue by col-
lecting the features obtained from the teacher model T1 for
the test samples in the current batch Xt. Then, we recom-
pute the prototypes for each class using equation ( 6). Next,
we select samples where T1 is confident but T2 is not. This
selection process ensures that we are focusing on samples
that T1 understands well, but which T2 could still benefit
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from learning. We define a binary variable n to identify
whether features of the i-th sample of the current batch will
be included for training the T2 model.

ni = 1[H(yT1
) ≤ σ].1[H(yT2

) > σ] (7)

where y
(i)
T1

and y
(i)
T2

are the prediction for the i-th sample
by T1 and T2 model, respectively. where si is the feature
representation obtained from T2 for the i-th test sample in
the current batch. For each feature in S, we compute the
cosine similarity with each class prototype and select the
nearest class prototype to form a positive pair. To make the
model invariant to small changes in the input space, we also
include the corresponding feature of the test sample. This
results in a batch size of 3N , where N is the number of fea-
tures in S and each batch consists of the features of original
test samples, their augmented views, and the nearest class
prototypes. Consider i ∈ I := {1, . . . , 3N}, A(i) := I\{i}
denote the set of indices excluding i, and V (i) represent the
different views of the current sample i. Following [2], we
apply a non-linear projection layer to obtain z = Proj(si).
The contrastive loss is then defined as:

LCL = −
∑
i∈I

∑
v∈V (i)

log

(
exp (sim(zi, zv)/τ)∑

a∈A(i) exp (sim(zi, za)/τ)

)
(8)

where τ denotes the scalar temperature and
sim(u, v) = uT v

∥u∥∥v∥ is the cosine similarity.

Feature Alignment with MSE Loss: To further en-
courage the T2 model to learn domain-generalized features,
we apply MSE loss with class prototypes, aligning sample
features with class centers across domains. This helps the
model focus on class characteristics, reducing domain-
specific noise. We compute the MSE loss for each test
sample by comparing its feature representation zi from T2

with the corresponding class prototype Pŷi
T1

:

LMSE =
1

N

N∑
i=1

∥zi − Pŷi
T1
∥2 (9)

where N is the number of test samples, and ŷiT1
is the

pseudo label for the sample xi
t as defined in Equation (4).

Information Maximization Loss: Since T2 serves as
a guide to the student model S in our framework, it should
exhibit strong individual discriminability and diversity in
its predictions. To achieve this, we follow state-of-the-art
methods [8][7] for unsupervised domain adaptation and
apply an information maximization loss, LIM which com-
prises two components. The entropy loss, Lent, improves
the individual certainty of predictions.

Lent = −Ext∈Xt

C∑
c=1

yT2(c) log(yT2(c)) (10)

where yT2 = fθT2
(xt). The diversity loss, Ldiv , encour-

ages variations across class distributions.

Ldiv =

C∑
c=1

q̄(c) log(q̄(c)) (11)

where q̄(c) = Ext∈Xt
(yT2

(c)). We then define the in-
formation maximization loss as:

LIM = Lent − Ldiv (12)

The overall training objective for the teacher model T2 is
defined as follows:

LT2 = λclLCL + λmseLMSE + λimLIM (13)

where λcl, λmse, and λim represent the weighting factors
for the contrastive loss, the MSE loss, and the information
maximization loss, respectively. After updating the T2

model by taking the gradient of the loss LT2
, we then

update T2 by applying the exponential moving average of
the student model S.

Stochastic Restoration for Mitigating Error Accu-
mulation: To address error accumulation from inaccurate
predictions due to distribution shifts, we adopt a stochastic
restoration method introduced in [19], which preserves
knowledge from the pretrained source model. This method
mitigates catastrophic forgetting by combining the original
and updated weights in the T2 model after each gradient
update. Consider a convolutional layer within the T2 model
with updated weights Wt+1 after a gradient update at time
step t. We apply a Bernoulli mask M ∼ Bernoulli(p), and
update the weights as follows:

Wt+1 = M ⊙W0 + (1−M)⊙Wt+1 (14)

where p is restore probability, and M selectively re-
stores the weights to their original values W0, preventing
the model from diverging too far from the source model.

3.4. Prediction Ensembling
In a typical teacher-student framework, the final output
comes from the teacher model. Inspired by [2], we com-
bine the outputs of both the student and T2 models. The stu-
dent model adapts quickly to the current domain, while the
T2 model provides generalized predictions across domains.
This combination leverages their complementary strengths,
improving prediction robustness and accuracy in dynamic
environments. For a test sample xt, the final prediction is:
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yt = fθS (xt) + fθT2
(xt) (15)

Prior Correction: It is shown in [11], in continual test-
time adaptation, the learned posterior q(y|x) may deviate
from the true posterior p(y|x) due to domain shifts, leading
to performance degradation. We adapt their strategy for the
dual-teacher setting. Following [15], the authors corrected
the posterior deviation to recover better performance by re-
scaling the learned posterior q(y|x) p(y|x) = q(y|x)p(y)q(y)

We perform prior correction by estimating the true class
prior p(y) as the sample mean of the current batch’s softmax
of the final prediction, as defined in equation 15, denoted p̂t,
under the assumption that our learned prior is nearly uni-
form as a result of the information loss objective in equa-
tion 12. Finally, we adopt an adaptive smoothing scheme
following [11]. to account for limited batch size as follows:

p̄t =
p̂t + γ

1 + γNc
, (16)

where, γ is the smoothing factor, and Nc is the number of
classes.

4. Result and Discussion
In this section, we show the dataset and the settings of do-
main adaptation.

4.1. Datasets
We assess our approach using diverse domain shifts, includ-
ing artificial corruptions and natural variations. Building
on the setup in [11], we employ the corruption benchmark
on CIFAR10-C, CIFAR100-C, and ImageNet-C. These
datasets feature 15 corruption types applied at five levels of
severity to validation and test images, as described in [11].
• ImageNet-C: Contains 1,000 categories or classes, with

50 samples per category for each domain, resulting in
50,000 images per domain.

• CIFAR100-C: Comprises 100 categories, with 100 sam-
ples per category or class for each domain, yielding a total
of 10,000 images per domain.

• CIFAR10-C: Consists of 10 classes, with 1,000 samples
per class for each domain, amounting to 10,000 images
per domain.

4.2. Benchmarks for Continual Test-Time Adapta-
tion

All evaluations are conducted in an online test-time
adaptation (TTA) setting, where predictions are updated
and evaluated immediately. We introduce four distinct
evaluation benchmarks to analyze the effectiveness of
CTTA:

Continual Domains: Following [11], the model adapts
sequentially across K domains [D1, D2, . . . , DK ] without
prior knowledge of domain boundaries. For the corruption
datasets, the sequence includes all 15 corruption types
encountered at severity level 5.

Mixed Domains: In this setting of [11], the test data
from different domains is randomly shuffled for adaptation.
As a result, consecutive samples during adaptation are
likely to come from different domains with different ratio.

Mixed after Continual TTA: Here, the domains are
first encountered sequentially, as in the continual setting,
but after this sequence, the data came from previously
seen domains is shuffled randomly, creating a mixed
configuration.

Cyclic Domains: We propose a new benchmark where
the domain sequence is repeated after completing a cycle
of subgroups categorized by similar corruption types,
such as noise, blur, weather, or digital artifacts. In our
experiments, we group corruptions into subgroups based
on their characteristics: Subgroup 1 includes gaussian
noise, shot noise, and impulse noise; Subgroup 2 consists
of defocus blur, motion blur, and glass blur; Subgroup 3
contains snow, fog, and frost; Subgroup 4 covers brightness
and contrast changes; and Subgroup 5 includes elastic
transform, pixelate, and jpeg compression.

4.3. Implementation Details
We use WideResNet-28 (WRN-28) for CIFAR10-
C, ResNeXt-29 for CIFAR100-C, and ResNet-50 for
ImageNet-C as source model along with presenting the
results of our method, SloMo-Fast, compared to various
baselines in several settings, including continual test-time
adaptation (CTTA), mixed domains, mixed after continual
domains, and cyclic test-time adaptation.

4.4. Result for Continual Test Time Adaptation
We first evaluate the performance of different methods un-
der the Continual TTA setting on CIFAR10-C, CIFAR100-
C, and ImageNet-C benchmarks. Table 1 shows the online
classification error rates (%) for each corruption type at the
highest severity level (severity 5). For CIFAR10-C, SloMo-
Fast achieves a mean error rate of 15.79±0.07, outperform-
ing other methods including state of the art method ROID
16.2. Similarly, for CIFAR100-C, SloMo-Fast leads with
a mean error rate of 27.01±0.12, where the state of the art
method, ROID, achieves 29.3. For ImageNet-C, SloMo-
Fast achieves a mean error rate of 54.2±0.10, which is also
the best among all the methods, compared to others showed
in the Table 1.

Here, we present an additional assessment demonstrat-
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Table 1. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the Continual TTA setting.
For CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for ImageNet-C, ResNet-50 are used.
We report the performance of each method averaged over 5 runs. *If all of the student parameters are updated otherwise only Batch
normalization layers are updated, SloMo-Fast improves the error rates further for CIFAR 10C, CIFAR 100C and ImageNet-C.
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Mean

CIFAR10-C

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.4 30.3 43.5
TENT-cont. 25.0 20.3 29.0 13.8 31.7 16.2 14.1 18.6 17.6 17.4 10.8 15.6 24.3 19.7 25.1 20.0±1.19
RoTTA 30.3 55.5 70.0 23.8 44.1 20.7 21.0 22.7 16.0 9.4 27.7 27.0 58.6 29.2 33.4 19.3±0.07
CoTTA 24.2 21.9 26.5 12.0 27.9 12.7 10.7 15.2 14.6 12.8 7.9 11.2 18.5 14.0 18.1 16.5±0.16
ROID 23.7 18.7 26.4 11.5 28.1 12.4 10.1 14.7 14.3 12.0 7.5 9.3 19.8 14.5 20.3 16.2±0.05
SloMo-Fast 22.6 19.0 24.9 13.0 25.0 14.0 12.3 15.0 14.7 13.5 10.1 12.5 17.4 13.3 16.3 16.2± 0.11
SloMo-Fast* 22.49 18.00 24.22 12.79 25.15 13.56 12.09 14.37 14.08 12.87 9.77 12.25 17.06 12.56 15.80 15.79 ± 0.07

CIFAR100-C

Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.4 35.4 30.5 9.3 55.1 37.2 74.7 41.2 46.4
TENT-cont. 37.3 35.6 41.6 37.9 51.3 48.1 48.9 59.8 65.3 73.6 74.2 85.7 89.1 91.1 93.7 62.2±2.17
RoTTA 49.1 44.9 45.5 30.2 42.7 29.5 26.1 32.2 30.7 37.5 24.7 29.1 32.6 30.4 36.7 34.8±0.15
CoTTA 40.5 38.2 39.8 27.2 38.2 28.4 26.4 33.4 32.2 40.6 25.2 27.0 32.4 28.4 33.8 32.8±0.07
ROID 36.5 31.9 33.2 24.9 34.9 26.8 24.3 28.9 28.5 31.1 22.8 24.2 30.7 26.5 34.4 29.3 ±0.04
SloMo-Fast 37.1 33.1 34.5 24.9 35.4 27.0 24.1 29.3 28.9 33.0 22.9 25.0 30.8 27.2 34.7 29.92± 0.08
SloMo-Fast* 37.82 32.76 33.36 26.25 31.26 26.90 24.33 26.81 26.50 28.44 23.37 24.33 26.19 24.29 27.01 27.97 ± 0.12

ImageNet-C

Source 97.8 97.1 98.2 81.7 89.8 85.2 77.9 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0
TENT-cont. 92.8 91.1 92.5 87.8 90.2 87.2 82.2 82.2 82.0 79.8 48.0 92.5 83.5 75.6 70.4 82.5±0.06
RoTTA 89.4 88.6 89.3 83.4 89.1 86.2 80.0 78.9 76.9 74.2 37.4 89.6 79.5 69.0 59.6 78.1±0.07
CoTTA 89.1 86.6 88.5 80.9 87.2 81.1 75.8 73.3 75.2 70.5 41.6 85.0 78.1 65.6 61.6 76.0±0.17
ROID 76.4 75.3 76.1 77.9 81.7 75.1 69.9 70.9 68.8 64.3 42.5 85.4 69.8 53.0 55.6 54.5±0.13
SloMo-Fast 68.6 65.2 64.5 68.2 66.7 57.0 49.7 51.0 56.4 43.1 33.8 57.3 43.9 41.4 45.7 54.2±0.10

Table 2. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the generalization experiments
with mixed domains. For CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for ImageNet-C,
ResNet-50 are used. We report the performance of each method averaged over 5 runs.
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Mean

CIFAR10-C

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.4 30.3 43.5
TENT-cont. 73.5 70.1 81.4 31.6 60.3 29.6 28.5 30.8 35.3 25.7 13.6 44.2 32.6 70.2 34.9 44.1 ± 3.82
CoTTA 38.7 36.0 56.1 36.0 36.8 32.3 31.0 19.9 17.6 27.2 11.7 52.6 30.5 35.8 25.7 32.5 ± 1.35
RoTTA 60.0 55.5 70.0 23.8 44.1 20.7 21.3 20.2 22.7 16.0 9.4 22.7 27.0 58.6 29.2 33.4 ± 0.15
RMT 42.8 39.7 55.0 28.5 38.6 26.5 25.9 19.6 18.9 20.6 12.2 27.3 26.9 56.9 25.9 31.0 ± 0.75
ROID 37.1 34.3 50.9 24.8 38.1 22.5 22.0 18.8 18.5 18.8 9.9 25.6 27.2 45.7 26.2 28.0 ± 0.12
SloMo-Fast 33.4 32.1 53.9 26.4 35.0 22.7 23.4 17.9 17.8 19.8 11.4 30.1 25.9 46.4 23.4 28.0±0.06

CIFAR100-C

Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
TENT-cont. 95.6 95.2 89.2 72.8 82.9 74.4 72.3 78.0 79.7 84.7 71.0 88.5 77.8 96.8 78.7 82.5 ± 1.45
CoTTA 54.4 52.7 49.8 36.0 45.8 36.7 33.9 38.9 35.8 52.0 30.4 60.9 40.2 38.0 41.1 43.1 ± 0.05
RoTTA 65.0 62.3 39.3 33.4 50.0 34.2 32.6 36.6 36.5 45.0 26.4 41.6 40.6 89.5 48.5 45.4 ± 0.14
RMT 52.6 49.9 32.2 31.0 40.5 31.8 30.4 33.4 33.9 40.6 27.8 36.9 35.3 65.0 38.1 38.6 ± 0.15
ROID 40.5 38.0 32.0 28.1 40.5 29.7 27.6 34.1 33.8 41.3 28.7 38.7 34.3 39.7 38.5 35.0 ± 0.04
SloMo-Fast 41.6 39.2 29.8 28.1 36.7 29.6 27.4 31.3 31.5 37.9 27.1 34.0 32.2 42.3 34.4 33.5 ± 0.02

ing improved memory efficiency of our method. By updat- ing only the batch normalization layers of the student model
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Table 3. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the mixed after continual
domains TTA setting. For CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for ImageNet-
C, ResNet-50 is used. We report the performance of each method averaged over 5 runs.
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CIFAR10-C

Tent 24.69 19.89 28.48 13.14 31.24 16.87 14.05 18.99 18.35 16.97 11.42 17.20 25.55 19.72 25.23 39.35
CoTTA 24.06 21.82 25.77 11.78 27.53 21.61 10.27 15.06 13.95 12.57 7.57 10.87 18.11 13.57 17.80 26.76
Roid 23.66 18.74 26.59 11.63 28.25 12.59 9.96 14.46 13.95 11.78 7.39 9.34 19.73 14.45 20.57 27.37
SloMo-Fast 22.76 18.54 24.62 12.51 24.78 13.70 12.17 14.43 14.53 12.84 9.65 12.01 16.96 12.67 16.17 21.34

CIFAR100-C

Tent 37.30 35.77 42.16 38.28 51.00 45.96 46.33 55.84 62.18 72.82 72.39 83.91 90.60 92.81 95.35 97.82
CoTTA 40.87 38.01 39.82 27.23 38.06 28.54 26.45 33.44 32.24 40.22 25.17 26.98 32.17 28.45 33.80 40.96
Roid 36.44 31.90 33.68 24.85 34.81 27.01 24.13 29.18 28.56 31.30 22.89 24.22 30.50 26.43 33.98 34.75
SloMo-Fast 37.84 32.92 33.18 26.68 31.61 27.10 24.85 26.58 26.26 28.45 23.64 24.34 26.57 24.51 27.17 28.00

Table 4. Our Proposed Cyclic TTA results of SloMo-Fast compared with existing methods on CIFAR10-C and CIFAR100-C for different
domain groups. Each subgroup completes a cycle of seeing different test domains twice. (Gaussian, Shot, Impulse): Group 1, (Defocus,
Glass, Motion, Zoom): Group 2, (Snow, Frost, Fog): Group 3, (Brightness, Contrast): Group 4, (Elastic, Pixelate, JPEG): Group 5. SloMo-
Fast achieves the best performance across both datasets.

Method Repetition CIFAR100-C CIFAR10-C

Group 1 Group 2 Group 3 Group 4 Group 5 Avg. Error Group 1 Group 2 Group 3 Group 4 Group 5 Avg. Error

TENT Cycle 1 38.28 31.14 32.93 25.04 34.09 32.29 23.66 16.95 15.22 9.07 20.09 17.47
Cycle 2 47.88 37.12 37.93 25.18 38.95 37.41 23.66 16.95 15.22 9.07 20.09 16.64

Avg. 43.08 34.13 35.43 25.11 36.52 34.85 23.66 16.95 15.22 9.07 20.09 17.06

COTTA Cycle 1 36.52 29.43 30.98 23.56 32.75 30.96 23.16 14.98 15.57 10.01 20.63 17.23
Cycle 2 44.67 34.69 35.93 23.97 36.39 34.69 23.15 15.54 15.15 9.86 20.06 16.28

Avg. 39.60 32.06 33.46 23.77 34.57 33.70 23.15 15.26 15.36 9.94 20.35 16.75

ROID Cycle 1 33.94 27.58 30.11 24.09 31.20 29.38 22.16 15.52 13.55 8.48 18.44 16.08
Cycle 2 32.43 28.31 29.29 23.21 30.55 28.52 22.16 15.52 13.55 8.48 18.44 15.17

Avg. 33.18 27.95 29.70 23.65 30.87 28.95 22.16 15.52 13.55 8.48 18.44 15.63

SloMo-Fast Cycle 1 33.29 27.02 26.96 24.84 25.79 27.98 20.62 15.21 13.09 10.23 14.02 14.89
Cycle 2 33.29 27.02 26.96 24.84 25.79 27.18 20.62 15.21 13.09 10.23 14.02 14.38

Avg. 33.29 27.02 26.96 24.84 25.79 27.58 20.62 15.21 13.09 10.23 14.02 14.63

during adaptation, we achieve a 98% reduction in trainable
parameters compared to fine-tuning the entire model. No-
tably, SloMo-Fast outperforms state-of-the-art methods on
CIFAR10-C and ImageNet-C with 16.2% and 54.2% error
rate respectively, even when adapting only the batch nor-
malization layers.

4.5. Results for Mixed Domains

Table 2 presents the results under mixed domain setting.
In this setup, the models are trained on mixed data, with
each batch incorporating samples from various corruptions.
From Table 2, we observe that SloMo-Fast continues to
outperform other methods in this setting. For CIFAR10-
C, SloMo-Fast achieves a mean error rate of 28.0±0.06,
which is lower than that of other existing methods. Simi-
larly, for CIFAR100-C, SloMo-Fast achieves a mean error
rate of 33.5±0.02, which is also better than the current best
ROID of 33.5% error rate. Experimental results demon-

strate the robustness of our method to distributional shifts,
even within a single batch, showcasing its effectiveness in
handling diverse corruptions

4.6. Results for Mixed After Continual Domains

In the Mixed After Continual Domains TTA setting, we
evaluate adaptation performance following the continual
learning phase. As shown in Table 3, SloMo-Fast con-
sistently achieves the lowest error rates across all datasets,
significantly outperforming existing methods. For exam-
ple, on CIFAR10-C, SloMo-Fast achieves a mean error rate
of 21.34%, compared to the second-best result of 27.37%.
Similarly, on CIFAR100-C, it achieves a mean error rate of
28.01, surpassing ROID’s 34.75%. These results indicate
that SloMo-Fast effectively retains knowledge of previously
seen domains, whereas other methods often struggle with
long-term forgetting of domain-specific knowledge.
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Figure 3. t-SNE visualization of test feature representations (◦)
and class prototypes (×): The plot demonstrates clear class sepa-
ration, indicating effective learning of distinct feature representa-
tions.

4.7. Results for Cyclic Test-Time Adaptation

We further investigate how our method retains long-term
domain-specific knowledge under cyclic test-time adapta-
tion (Cyclic TTA) conditions, as outlined in Table 4. Al-
though detailed results for this specific setting are not in-
cluded in the current tables, trends observed in previous ex-
periments indicate that SloMo-Fast would likely maintain
its superior performance in terms of error rates due to its
robust continual adaptation capabilities.

In this setup, we consider five groups of domains and
repeat the test-time adaptation process in the same sequen-
tial order after completing one full cycle. Interestingly, we
observe that during the second occurrence of a previously
encountered subgroup of domains, SloMo-Fast adapts sig-
nificantly faster than other methods. This can be attributed
to its generalized pseudo-prototypes, which effectively con-
solidate knowledge from all past domains. Consequently,
during repetition, our method leverages this stored knowl-
edge for rapid adaptation and more accurate prediction, re-
sulting in superior performance on repeated domains com-
pared to competing methods.

4.8. Qualitative Results: t-SNE Visualization

Finally, to visualize the effectiveness of our method, we pro-
vide t-SNE plots of the feature space at final stage of adap-
tation in Figure 3. The t-SNE visualization for SloMo-Fast
shows that the learned representations are well-clustered
and exhibit clear separation between the different classes,
even under severe corruption conditions.

5. Conclusion
In this paper, we presented SloMo-Fast, a dual-teacher
framework for Continual Test-Time Adaptation (CTTA)
that eliminates the need for source data while enhancing
adaptability, generalization, and computational efficiency.
By leveraging two complementary teachers, the Fast-
Teacher (T1) and Slow-Teacher (T2), SloMo-Fast adapts
to new domains rapidly while maintaining robust general-
ization to previously encountered domains. Our approach
utilizes class-wise prototypes and contrastive learning to
refine the Slow-Teacher’s representations, and batch nor-
malization updates significantly reduce the computational
complexity. Through extensive experiments on CIFAR-
10C, CIFAR-100C, and ImageNet-C, we demonstrated that
SloMo-Fast outperforms existing CTTA methods across
various domain adaptation scenarios. Additionally, we val-
idated the framework’s performance in real-world settings,
including repetitive domain shifts and mixed-domain sce-
narios, establishing new benchmarks for generalization and
robustness under complex conditions. Our work provides
a significant step forward in the development of source-
free, continual adaptation methods, and opens up new av-
enues for applying CTTA in privacy-sensitive and resource-
constrained environments.

References
[1] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna

Ebrahimi. Contrastive test-time adaptation. In CVPR, pages
295–305, 2022. 3
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sal test-time adaptation through weight ensembling, diver-
sity weighting, and prior correction. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2555–2565, 2024. 2, 3, 7

[12] Robert A. Marsden, Mario Döbler, and Bin Yang. Introduc-
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Supplementary Material

6. Supplementary Experimental Results

6.1. Ablation Study on Losses Applied to T2
The results of the ablation study are summarized in Tables
5 and 6, which evaluate the effect of different loss functions
applied to the T2 model on the CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C online continual test-time adap-
tation tasks, respectively, evaluations use the WideResNet-
28 and ResNeXt-29 model under the highest corruption
severity level (level 5). The classification error rates (%)
are reported for 15 corruption types, along with the mean
error rate as a summary.

In the CIFAR10-to-CIFAR10C task (Table 5), the T2

model trained with all three losses—mean squared error
(MSE), information maximization (IM), and contrastive
loss (CL)—achieves the lowest mean error rate of 14.88%.
This indicates the strong performance of the full configura-
tion under severe corruption scenarios. Removing the con-
trastive loss (✓ MSE, ✓ IM) slightly increases the mean
error rate to 16.04%, suggesting that CL contributes signifi-
cantly to robustness. Excluding the information maximiza-
tion loss (✓ MSE, ✓ CL) results in a mean error rate of
16.17%, highlighting the importance of IM in the adaptation
process. When MSE is excluded (✓ IM, ✓ CL), the mean
error rate is slightly better at 15.89%, reflecting a strong in-
teraction between IM and CL, even in the absence of MSE.

For the CIFAR100-to-CIFAR100C task (Table 6), simi-
lar trends are observed. The T2 model trained with all three
losses achieves the lowest mean error rate of 28.00%. Re-
moving CL (✓ MSE, ✓ IM) increases the mean error rate to
28.57%, demonstrating the importance of CL in enhancing
robustness. Excluding IM (✓ MSE, ✓ CL) leads to a mean
error rate of 28.35%, showing the critical role of IM in the
adaptation process. Finally, removing MSE (✓ IM, ✓ CL)
results in a mean error rate of 28.23%, again underscoring
the synergy between IM and CL.

The results from both CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C tasks consistently highlight the
benefits of integrating all three losses in the T2 model. This
combination achieves the lowest error rates across diverse
corruption types, validating the effectiveness of the pro-
posed design for continual test-time adaptation.

6.2. Ablation Study on Prior Correction and
Stochastic Restoration

The results of the ablation study are presented in Tables 7
and 8, which evaluate the effect of Prior Correction (PC)

applied to the model output and Stochastic Restoration
(ST) of the T2 model on the CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C online continual test-time adap-
tation tasks, respectively. The evaluations are conducted us-
ing the WideResNet-28 and ResNeXt-29 model under the
highest corruption severity level (level 5). Classification er-
ror rates (%) are reported for 15 corruption types, along with
the mean error rate as an overall summary.

In the CIFAR10-to-CIFAR10C task (Table 7), applying
PC to the output and using Stochastic Restoration of the T2

model achieves the lowest mean error rate of 14.88%. This
result demonstrates the effectiveness of combining these
techniques for robust adaptation. When Stochastic Restora-
tion is removed, and only PC is applied to the output, the
mean error rate increases to 16.11%, indicating the critical
role of Stochastic Restoration in enhancing the model’s ro-
bustness under severe corruptions. Conversely, removing
PC while retaining Stochastic Restoration results in a mean
error rate of 15.78%, suggesting that Prior Correction also
significantly contributes to improved performance. These
findings highlight the complementary roles of PC and ST in
enhancing the adaptation capabilities of the T2 model.

In the CIFAR100-to-CIFAR100C task (Table 8), a sim-
ilar trend is observed. Applying PC to the output along-
side Stochastic Restoration of the T2 model achieves the
lowest mean error rate of 28.00%. Removing Stochastic
Restoration while retaining PC increases the mean error
rate to 28.48%, demonstrating the importance of Stochastic
Restoration for handling severe corruptions. On the other
hand, using only Stochastic Restoration without PC results
in a mean error rate of 28.08%, highlighting the significant
role of Prior Correction in reducing classification errors.

The results from both CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C tasks consistently demonstrate
that the combination of Prior Correction and Stochastic
Restoration leads to the most effective adaptation.

6.3. Effect of Consistency Loss

Tables 9 and 10 present the classification error rates
(%) for the CIFAR10-to-CIFAR10C and CIFAR100-to-
CIFAR100C online continual test-time adaptation tasks, re-
spectively. These results evaluate the effect of applying a
consistency loss between the student model and teacher: T1,
T2, and T1 with data augmentation input(T1(aug)). The
evaluations are conducted using WideResNet-28 for CI-
FAR10C and ResNeXt-29 for CIFAR100C under the largest
corruption severity level (level 5). Classification error rates
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Table 5. Evaluating the effect of our proposed loss on T2, evaluated on the CIFAR10-to-CIFAR10C online continual test-time adaptation
task. Results are reported as classification error rates (%) using a WideResNet-28 model with corruption severity level 5. Mean squared
error (MSE), information maximization (IM), and contrastive loss (CL).

Design Choices Error Rate (%)

MSE IM CL Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg Mean

✓ ✓ 22.55 18.47 25.11 13.37 24.87 14.05 12.50 14.56 14.34 13.42 10.04 12.40 17.28 13.11 16.50 16.17
✓ ✓ 23.23 18.98 25.44 12.04 25.53 13.45 11.97 14.47 14.39 12.75 9.48 12.18 17.27 12.78 16.70 16.04

✓ ✓ 22.67 18.50 24.65 13.03 24.64 13.65 12.03 14.36 14.11 13.18 9.60 12.14 17.23 12.66 15.95 15.89
✓ ✓ ✓ 22.45 18.51 24.78 11.93 24.69 12.23 10.10 12.73 12.97 11.47 7.51 9.96 16.24 11.70 15.95 14.88

Table 6. Evaluating the effect of our proposed loss on T2, evaluated on the CIFAR100-to-CIFAR100C online continual test-time adaptation
task. Results are reported as classification error rates (%) using a ResNeXt-29 model with corruption severity level 5. Mean squared error
(MSE), information maximization (IM), and contrastive loss (CL).

Design Choices Error Rate (%)

MSE IM CL Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg Mean

✓ ✓ 38.19 33.06 33.95 26.76 32.43 27.63 25.03 27.44 26.68 29.44 23.82 24.86 26.52 24.92 27.81 28.57
✓ ✓ 38.92 33.29 33.40 26.60 32.09 27.39 24.82 26.73 27.07 28.36 23.65 24.23 26.74 24.76 27.25 28.35

✓ ✓ 38.04 32.69 33.16 26.83 31.59 26.91 24.86 27.03 26.93 28.25 23.76 24.67 26.65 24.80 27.24 28.23
✓ ✓ ✓ 37.91 32.51 33.23 26.54 31.42 26.81 24.46 26.58 26.34 28.40 23.51 24.60 26.35 24.20 27.11 28.00

are reported for 15 corruption types, along with the mean er-
ror rate as a summary.For CIFAR10-C, the best results are
achieved by incorporating the consistency loss between the
student predictions and the predictions from both T1 and T2.
For CIFAR100-C, the best performance is obtained by us-
ing the consistency loss between the student predictions and
the predictions from T2 and T1 with augmented samples.

6.4. CTTA Under Cyclic Domain Settings
In continual test-time adaptation, catastrophic forgetting oc-
curs when the model forgets previously learned knowledge
while adapting to new domains. To address this, we pro-
pose a second teacher model that learns more generalized
knowledge compared to the primary teacher model, which
is more adapted to the current domain. This helps retain
critical knowledge from past domains while enabling adap-
tation to new ones, mitigating the risk of forgetting. To val-
idate our approach, we conduct an ablation study in cyclic
domain settings, where domains are grouped and presented
in a cycle. This setup allows us to compare the effectiveness
of various methods designed to tackle catastrophic forget-
ting. Table 11-17 presents the detailed results on the newly
proposed benchmark CTTA under cyclic domain settings.

The experimental results demonstrate that our method
improves performance when domains repeat, indicating
that it retains past knowledge to some extent while adapt-
ing to new domains. Specifically, our approach achieves
lower error rates compared to state-of-the-art methods. In
CIFAR10-C, our method achieves an error rate of 14.89%
in Cycle 1 and 14.38% in Cycle 2, showing improvement in
error rate as domains are repeated. In contrast, TENT[18],
which does not specifically address continual domain adap-
tation, results in higher error rates, with Cycle 1 at 17.47%

and Cycle 2 at 16.64%. While COTTA[19] shows some
improvement initially, it does not exhibit reduction in error
rates when domains are repeated. ROID[11], on the other
hand, shows limited improvement under cyclic domain set-
tings. Compared to state-of-the-art methods, our method
demonstrates better retention of past knowledge, leading to
more stable performance across cyclic domains. These re-
sults highlight the effectiveness of our approach in mitigat-
ing catastrophic forgetting and adapting to domain shifts,
outperforming existing methods in terms of reduced error
rates.

6.5. Catastrophic Fogetting
The figures illustrate the performance of different CTTA
methods, including SloMo-Fast, on the CIFAR10-C bench-
mark, highlighting challenges like catastrophic forgetting
and the ability to retain long-term knowledge.

In the standard CTTA setting, as shown in 4, the SloMo-
Fast method achieves consistently low error rates, with a
mean error of 15.79%, outperforming CoTTA (16.5%) and
ROID (16.2%). This demonstrates SloMo-Fast’s superior
adaptability while avoiding performance degradation seen
in other methods.

For mixed domain settings, as shown in 5, SloMo-Fast
maintains the best mean error rate of 28.0%, compared
to CoTTA (32.5%) and ROID (28.0%). This highlights
SloMo-Fast’s ability to handle mixed corruption scenarios
effectively.

When evaluating performance in a mixed-after-continual
setting, as in 6, SloMo-Fast achieves the lowest mean
error rate of 21.34%, significantly outperforming ROID
(27.37%) and CoTTA (26.76%), showcasing its resilience
to catastrophic forgetting.
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Table 7. Classification error rate (%) for the CIFAR10-to-CIFAR10C online continual test-time adaptation task. Results are evaluated
using the WideResNet-28 model with corruption severity level 5. Prior Correction (PC) is applied to the model output, and Stochastic
Restoration (ST) is applied to the T2 model.

Design Choices Error Rate (%)

PC ST Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg Mean

✓ 22.61 17.88 23.86 13.85 24.71 14.98 12.44 14.42 14.33 13.77 10.38 12.54 17.31 12.89 15.71 16.11
✓ 22.58 18.57 24.48 12.82 24.77 13.39 11.76 14.45 14.01 13.02 9.68 11.74 17.08 12.52 15.89 15.78

✓ ✓ 22.45 18.51 24.78 11.93 24.69 12.23 10.10 12.73 12.97 11.47 7.51 9.96 16.24 11.70 15.95 14.88

Table 8. Classification error rate (%) for the CIFAR100-to-CIFAR100C online continual test-time adaptation task. Results are evaluated
using the ResNeXt-29 model with corruption severity level 5. Prior Correction (PC) is applied to the model output, and Stochastic
Restoration (ST) is applied to the T2 model.

Design Choices Error Rate (%)

PC ST Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg Mean

✓ 37.36 32.60 33.72 27.43 32.28 27.51 25.10 27.20 26.89 29.37 24.01 24.65 27.00 24.61 27.49 28.48
✓ 37.96 32.52 33.07 26.79 31.51 27.20 24.76 26.65 26.42 28.33 23.49 24.50 26.47 24.51 27.00 28.08

✓ ✓ 37.91 32.51 33.23 26.54 31.42 26.81 24.46 26.58 26.34 28.40 23.51 24.60 26.35 24.20 27.11 28.00

In the cyclic domain adaptation scenario, as shown in
7, SloMo-Fast exhibits stable performance, maintaining
an average error rate of 14.63% across repeated domains,
compared to ROID’s 15.63%. This demonstrates SloMo-
Fast’s ability to retain previously learned knowledge with-
out succumbing to forgetting, a common issue in ROID and
CoTTA.

Overall, the results validate SloMo-Fast as a robust so-
lution for CTTA, capable of preserving long-term domain
knowledge while achieving state-of-the-art performance.
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Table 9. Classification error rate (%) for the standard CIFAR10-to-CIFAR10C online continual test-time adaptation task. Results are
evaluated on WideResNet-28 with the largest corruption severity level 5. The consistency loss calculated between student and teachers. T1

indicates consistency loss calculated between student and teacher 1, T2 indicates consistency loss calculated between student and teacher 2,
T1(aug) indicates consistency loss calculated between student and teacher 1 where the input of teacher is augementation of input images.

Design Choices Error Rate (%)

T1 T2 T1(aug) Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg Mean

✓ ✓ 22.71 18.12 24.23 12.83 25.57 13.58 11.57 15.07 14.24 13.30 9.74 12.21 17.03 13.34 15.72 15.95
✓ ✓ 22.70 18.75 25.45 12.98 25.74 14.38 12.37 15.39 15.15 13.40 10.31 13.34 17.83 13.42 17.15 16.56

✓ ✓ 22.64 18.22 24.89 13.22 25.14 14.60 12.27 14.56 14.65 13.12 10.22 12.34 17.66 12.92 16.43 16.19

Table 10. Classification error rate (%) for the standard CIFAR100-to-CIFAR100C online continual test-time adaptation task. Results are
evaluated on ResNeXt-29 with the largest corruption severity level 5. The consistency loss calculated between student and teachers. T1

indicates consistency loss calculated between student and teacher 1, T2 indicates consistency loss calculated between student and teacher 2,
T1(aug) indicates consistency loss calculated between student and teacher 1 where the input of teacher is augementation of input images.

Design Choices Error Rate (%)

T1 T2 T1(aug) Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg Mean

✓ ✓ 38.27 32.97 33.91 26.32 32.02 27.01 24.76 27.31 26.68 28.91 23.74 24.04 26.51 24.34 27.11 28.26
✓ ✓ 38.18 33.13 33.97 27.13 32.52 27.48 25.41 27.78 27.05 29.06 24.24 25.61 27.74 25.60 28.62 28.90

✓ ✓ 37.36 32.72 33.05 26.32 31.67 27.22 24.79 26.94 26.35 28.38 23.64 24.74 26.78 24.62 27.12 28.11

Table 11. Detailed Evaluation Results for TENT on CIFAR10-C under Cyclic Domain Settings

Method Subgroup Cycle 1 Cycle 2
Domain Error (%) Avg Domain Error (%) Avg

Tent

Subgroup 1 (Noise)
gaussian 23.42

23.66
gaussian 24.87

23.66shot 21.98 shot 24.37
impulse 25.58 impulse 21.74

Subgroup 2 (Blur)

defocus 11.81

16.95

defocus 11.81

16.95glass 29.76 glass 29.76
motion 14.01 motion 14.01
zoom 12.23 zoom 12.23

Subgroup 3 (Weather)
snow 16.34

15.22
snow 14.98

15.22frost 15.94 frost 15.44
fog 14.10 fog 14.55

Subgroup 4 (Error1) brightness 7.91 9.07 brightness 7.67 9.07contrast 10.81 contrast 9.89

Subgroup 5 (Error2)
elastic 22.11

20.09
elastic 20.55

20.09pixel 16.22 pixel 15.54
jpeg 23.77 jpeg 22.33

Cycle 1 Avg: 17.47% Cycle 2 Avg: 16.64%
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Table 12. Detailed Evaluation Results for TENT on CIFAR100-C under Cyclic Domain Settings

Method Subgroup Cycle 1 Cycle 2
Domain Error (%) Avg Domain Error (%) Avg

TENT

Subgroup 1 (Noise)
gaussian 38.12

38.28
gaussian 47.32

47.88shot 38.45 shot 48.23
impulse 38.27 impulse 48.09

Subgroup 2 (Blur)

defocus 30.87

31.14

defocus 37.00

37.12glass 31.19 glass 36.78
motion 30.75 motion 37.39
zoom 31.27 zoom 37.50

Subgroup 3 (Weather)
snow 33.05

32.93
snow 36.88

37.93frost 33.21 frost 36.32
fog 32.55 fog 38.58

Subgroup 4 (Error1) brightness 25.32 25.04 brightness 24.95 25.18contrast 24.76 contrast 25.41

Subgroup 5 (Error2)
elastic 33.72

34.09
elastic 39.05

38.95pixel 34.56 pixel 39.14
jpeg 33.98 jpeg 38.66

Cycle 1 Avg: 32.29% Cycle 2 Avg: 37.41%

Table 13. Detailed Evaluation Results for COTTA on CIFAR100-C under Cyclic Domain Settings

Method Subgroup Cycle 1 Cycle 2
Domain Error (%) Avg. Domain Error (%) Avg.

COTTA

Subgroup 1 (Noise)
gaussian 36.14

36.52
gaussian 44.23

44.67shot 36.84 shot 44.98
impulse 36.57 impulse 44.81

Subgroup 2 (Blur)

defocus 29.12

29.43

defocus 34.45

34.69glass 29.55 glass 34.08
motion 28.99 motion 34.72
zoom 29.36 zoom 34.51

Subgroup 3 (Weather)
snow 31.25

30.98
snow 35.45

35.93frost 30.84 frost 35.21
fog 30.85 fog 37.13

Subgroup 4 (Error1) brightness 23.28 23.56 brightness 23.95 23.97contrast 23.84 contrast 24.09

Subgroup 5 (Error2)
elastic 32.48

32.75
elastic 36.54

36.39pixel 32.88 pixel 36.19
jpeg 32.89 jpeg 36.44

Cycle 1 Avg: 30.96% Cycle 2 Avg: 34.69%
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Table 14. Detailed Evaluation Results for ROID on CIFAR10-C under Cyclic Domain Settings

Method Subgroup Cycle 1 Cycle 2
Domain Error (%) Avg Domain Error (%) Avg

ROID

Subgroup 1 (Noise)
gaussian 23.94

22.16
gaussian 20.62

22.16shot 22.41 shot 21.00
impulse 20.62 impulse 24.87

Subgroup 2 (Blur)

defocus 10.52

15.52

defocus 10.52

15.52glass 28.20 glass 28.20
motion 12.06 motion 12.06
zoom 10.06 zoom 10.06

Subgroup 3 (Weather)
snow 15.12

13.55
snow 14.01

13.55frost 14.41 frost 13.79
fog 12.04 fog 11.92

Subgroup 4 (Error1) brightness 7.76 8.48 brightness 7.37 8.48contrast 9.61 contrast 9.17

Subgroup 5 (Error2)
elastic 21.08

18.44
elastic 19.16

18.44pixel 15.22 pixel 14.51
jpeg 20.62 jpeg 20.02

Cycle 1 Avg: 16.08% Cycle 2 Avg: 15.17%

Table 15. Detailed Evaluation Results for ROID on CIFAR100-C under Cyclic Domain Settings

Method Subgroup Cycle 1 Cycle 2
Domain Error (%) Avg Domain Error (%) Avg

ROID

Subgroup 1 (Noise)
gaussian 32.34

32.53
gaussian 33.67

33.83shot 33.12 shot 34.58
impulse 32.12 impulse 33.25

Subgroup 2 (Blur)

defocus 27.12

26.44

defocus 28.44

28.31
glass 25.67 glass 27.23

motion 26.22 motion 28.23
zoom 26.65 zoom 29.34

Subgroup 3 (Weather)
snow 28.77

30.11
snow 29.29

29.70frost 28.06 frost 28.77
fog 33.50 fog 31.03

Subgroup 4 (Error1) brightness 23.64 24.09 brightness 22.46 23.21contrast 24.53 contrast 23.95

Subgroup 5 (Error2)
elastic 32.08

31.20
elastic 30.86

30.55pixel 27.28 pixel 26.90
jpeg 34.23 jpeg 33.88

Cycle 1 Avg: 29.38% Cycle 2 Avg: 28.52%

6



Table 16. Detailed Evaluation Results for SloMo-Fast on CIFAR10-C under Cyclic Domain Settings

Method Subgroup
Cycle 1 Cycle 2

Domain Error (%) Avg Domain Error (%) Avg

SloMo-Fast

Subgroup 1 (Noise)
gaussian 21.65

20.62
gaussian 20.34

20.62shot 19.78 shot 21.12
impulse 20.43 impulse 20.40

Subgroup 2 (Blur)

defocus 15.03

14.79

defocus 14.34

15.21glass 14.65 glass 15.92
motion 17.07 motion 16.27
zoom 12.41 zoom 13.90

Subgroup 3 (Weather)
snow 13.72

13.21
snow 13.10

13.09frost 13.42 frost 13.23
fog 12.48 fog 12.58

Subgroup 4 (Error1) brightness 9.33 10.24 brightness 9.17 10.23contrast 11.15 contrast 11.26

Subgroup 5 (Error2)
elastic 15.85

13.96
elastic 15.64

14.02pixel 11.56 pixel 11.98
jpeg 14.46 jpeg 14.61

Cycle 1 Avg: 14.89% Cycle 2 Avg: 14.38%

Table 17. Detailed Evaluation Results for SloMo-Fast on CIFAR100-C under Cyclic Domain Settings

Method Subgroup Cycle 1 Cycle 2
Domain Error (%) Avg Domain Error (%) Avg

SloMo-Fast

Subgroup 1 (Noise)
gaussian 34.12

33.29
gaussian 34.82

33.29shot 32.54 shot 31.89
impulse 33.12 impulse 33.84

Subgroup 2 (Blur)

defocus 27.01

27.02

defocus 27.03

27.02glass 26.97 glass 27.04
motion 26.89 motion 27.12
zoom 27.22 zoom 26.89

Subgroup 3 (Weather)
snow 27.00

26.96
snow 26.98

26.96frost 26.90 frost 27.01
fog 26.98 fog 26.89

Subgroup 4 (Error1) brightness 24.74 24.84 brightness 24.41 24.84contrast 25.05 contrast 25.18

Subgroup 5 (Error2)
elastic 25.72

25.79
elastic 25.67

25.79pixel 24.79 pixel 24.97
jpeg 26.84 jpeg 26.73

Cycle 1 Avg: 27.98% Cycle 2 Avg: 27.18%
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Figure 4. CTTA Error rates (%) for Source (blue), CoTTA (black), ROID (green), and PA (red) across domains in the CIFAR10-C
benchmark.
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Figure 5. Mixed TTA Error rates (%) for Source (blue), CoTTA (black), ROID (green), and PA (red) methods across domains in the
CIFAR10-C benchmark for mixed domains.
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Figure 6. Mixed after Continual TTA Error rates (%) for Tent (blue), CoTTA (black), ROID (green), and PA (red) methods across domains
in the CIFAR10-C benchmark for mixed domains after continual learning.
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