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RGC: a radio galaxy classifier based on artificial neural networks
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1. Introduction

In this paper, we present Version 1.0 of RGC, a Radio Galaxy1

Classifier named after Radha Gobinda Chandra (1878–1975), a
Bangladeshi-Indian amateur astronomer who contributed more
than fifty thousand observations to the American Association of
Variable Star Observers (Maitra 2021) and reported the observa-
tion of 1P/Halley in 1910 in Bangla (Kapoor 2023). RGC uses
convolutional neural netowrks (CNN) to classify radio Active
Galactic Nuclei (radio AGN) with straight and bent synchrotron
jets, or tails. Its performance in classifying these objects into
Fanaroff–Riley (FR) types I and II was described by (Hossain
et al. 2023, hereafter H23). In this work, we present and analyze
its performance in classifying bent radio AGNs (hereafter ‘bent
AGN’) into wide-angle tail (WAT) and narrow-angle tail (NAT)
AGNs. A background to the present work is given below.

The observable universe could contain almost two trillion
galaxies (Conselice et al. 2016), but only a fraction of them have
been observed at different wavelengths. The x-ray space tele-
scope eROSITA is expected to find thousands of galaxy clus-
ters and millions of AGNs (Predehl et al. 2021). Samples of
700 thousand AGNs (Merloni et al. 2024) and 12 thousand
galaxy clusters and groups (Bulbul et al. 2024) have already
been published. In visible light, the eleventh and twelfth data
releases of SDSS-III2 contained more than 1.3 million galax-
ies and more than a quarter of a million quasars (Alam et al.
2015). The mid-infrared space telescope WISE (Wide-field In-
frared Survey Explorer) has identified almost 750 million radio
sources which are part of its AllWISE data release (Kurcz et al.
1 Although we use the word ‘radio galaxy’ here as part of the full form
of RGC, hereafter we will refer to these galaxies as radio AGNs.
2 Sloan Digital Sky Survey

2016). At mid radio frequencies, the Faint Images of the Ra-
dio Sky at Twenty-Centimeters (FIRST) taken using the Karl G.
Jansky Very Large Array (VLA) contains more than 800 thou-
sand sources in its April 2003 release (Proctor 2011); the initial
catalog of Becker et al. (1995) contained 20 thousand sources.
At a lower frequency, the Evolutionary Map of the Universe
(EMU) conducted using the Australian Square Kilometre Array
Pathfinder (ASKAP) contained more than 200 thousand sources
in its pilot survey and it is expected to find many more (Norris
et al. 2021). And at the lowest radio frequencies, LOw Frequency
ARray (LOFAR) has detected almost 4.4 million sources as part
of its Two-metre Sky Survey LOTSS (Shimwell et al. 2022).

Astronomers are also cross-matching the sources seen at dif-
ferent wavelengths, especially the AGNs with their host galax-
ies. For example, Best & Heckman (2012) cross-matched FIRST
and SDSS with NVSS (NRAO3 VLA Sky Survey) to produce a
catalog of more than 18 thousand sources. Traditionally cross-
matching has been achieved through visual inspection by as-
tronomers which is not feasible for the latest generation of sur-
veys. Therefore, Banfield et al. (2015) created the citizen sci-
ence project Radio galaxy Zoo (RGZ) where users were asked
to cross-identify radio images from FIRST and ATLAS (Aus-
tralia Telescope Large Area Survey, a pathfinder of EMU) with
their host galaxies imaged by WISE or Spitzer Space Telescope
in infrared. The currently archived project was expected to find
over 170 thousand cross-matched sources.

If we focus on the history of ‘radio’ continuum surveys from
the days of Grote Reber until the last decade, we see that the
number of detected sources increased by an order of four from
the 1940s to the 1970s, and since then we have seen an increase

3 National Radio Astronomy Observatory
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by four more orders of magnitude (Figure 2 of Norris 2017).
EMU and LOFAR are expected to find close to 100 million ra-
dio sources. The number will increase a lot when the Square
Kilometer Array (SKA) begins to operate in two phases, SKA1
and SKA2, and at two different frequency bands, SKA-Low and
SKA-Mid. At mid-frequencies, SKA1 All Sky Survey (SASS1)
will detect around 500 million galaxies and SASS2 over 3 bil-
lion galaxies spanning all redshifts (Norris et al. 2015). The first
of the 131,072 two-meter-tall Christmas-tree-shaped antennas of
SKA-Low was installed in a Wajarri country in Australia on 7
March 2024 and the first of the 197 fifteen-meter-wide dishes of
SKA-Mid was lifted onto a pedestal on 4 July 2024 in the Karoo
region of South Africa.4

In this context, artificial intelligence (AI) is necessary for lo-
calizing astronomical sources in large datasets and classifying
them into scientifically meaningful classes. A recent review by
Ndung’u et al. (2023) emphasizes on the new paradigm shift that
has happened due to the application of machine learning (ML)
and deep learning (DL) for the morphological classification of
radio AGNs. They have reviewed 32 papers published between
2017 and 2023 that utilized both conventional ML and DL meth-
ods. The most frequently used methods were found to be based
on shallow and deep convolutional neural networks (CNN),
as evident in their Figure 7. The methods were divided into
model-centric and data-centric approaches. The model-centric
approaches focus on applying novel architectures on existing
well-curated datasets which are scarce. Most methods use low-
resolution images taken by older telescopes such as, VLA. These
are sometimes not suited to the new high-resolution images com-
ing out of the latest surveys from the new generations of tele-
scopes, for example, LOFAR and MeerKAT. The data-centric
approaches leverage the availability of more numerous images
and focus on transfer learning and semi-supervised learning.

Our data-centric approach is based on semi-supervised learn-
ing where we leverage the availability of unlabelled data for clas-
sifying bent radio AGNs. The model used here is the same as that
of H23, but we use it for classifying bent AGNs for the first time.
The paper is organized as follows. Section 2 gives an overview of
bent AGNs and Section 3 gives a detailed description of the data
we have prepared for an efficient use in DL. Section 4 presents
our semi-supervised model in a more detailed manner than H23.
Both Sections 3 and 4 refer to the installable Python package
rgc5 throughout, which is released along with this paper. Section
5 describes the performance of the model in classifying the bent
AGNs of our dataset, and Section 6 gives a critical discussion
about the limitations and prospects of the model. We conclude
the paper with Section 7.

2. Bent radio active galactic nuclei

The importance of studying bent radio AGNs was noted early on
by Rudnick & Owen (1976) who called them head-tail (HT) ra-
dio sources. Their bent tails could result from the interaction of
their relativistic jets with the intracluster medium (ICM) of their
host cluster of galaxies (Miley et al. 1972). Bent AGNs have be-
come more useful than their straight-tailed counterparts because
of their strong interaction with the environment; they can be used
effectively to study the environments of galaxy clusters (Golden-
Marx et al. 2023).

4 According to https://www.skao.int/news.
5 https://pypi.org/project/rgc.

3. Data

Throughout this work we used images of radio galaxies observed
by the Karl G. Jansky Very Large Array (VLA) as part of its
Faint Images of the Radio Sky at Twenty-Centimeters (FIRST)
survey. The survey covered a vast area of 10,000 square degrees
of the sky producing images with a resolution of 5 arcsec and
a sensitivity of 0.15 mJy. Each pixel in the final images corre-
sponds to an angular size of 1.8 arcsec.

3.1. Radio Galaxy Zoo

Slijepcevic 2022: 3.2, 3.3, 4.3
Slijepcevic 2024

3.2. Head-tail galaxies

Compare Sasmal 2022 (compare with Proctor 2011; automatic)

3.3. Pre-processing

To prepare the dataset for machine learning, we had to go
through several steps of pre-processing The catalog of bent ra-
dio AGNs was downloaded from the VizieR database6. VizieR
is a database of astronomical catalogs and tables that provides
access to a wide range of astronomical data. We use the sources
from the catalog of ?, catalog ID J/ApJS/259/31. This catalog
contains two tables: Table 1 contains 430 sources of WAT galax-
ies and Table 2 contains 287 sources of NAT galaxies. The tables
contained the coordinates of the sources, redshifts, flux densities,
and other properties along with the Fanaroff-Riley (FR) classifi-
cation of the sources. The catalog was downloaded in the form
of a VOTable file, which is a standard format for representing
astronomical data and metadata. The VOTable file was then con-
verted to a Pandas DataFrame for further processing. In our rgc
package, we provide a function catalog_quest to download
the catalog from VizieR and convert it to a DataFrame. It takes
the catalog ID and service name (e.g., VizieR) as input and re-
turns the DataFrame containing the catalog data. The coordinates
of the sources were used to download the images of the sources
from the FIRST survey and the images were pre-processed to
prepare them for training the machine learning model. The pre-
processed images were then used to train the machine learning
model. Figure 1 shows the pre-processing steps that were ap-
plied to the images of the sources. The pre-processing steps are
described in detail below.

3.3.1. Downloading

The images of the sources were downloaded from the FIRST
survey using the coordinates of the sources provided in the cat-
alog. We used the Python package Astroquery7 to download the
images from National Aeronautics and Space Administration
(NASA)’s SkyView8 service. SkyView is a virtual observatory
that provides access to a wide range of astronomical images from
different surveys. In this work, we used the FIRST survey to
download the images of the sources. Given the position and size
of the sources, SkyView provides the images of the sources in the
form of Flexible Image Transport System (FITS) files. The FITS

6 https://vizier.u-strasbg.fr/viz-bin/VizieR
7 https://astroquery.readthedocs.io/en/latest/
8 https://skyview.gsfc.nasa.gov/current/cgi/titlepage.
pl
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Fig. 1. Caption

files contain the radio images of the sources with the pixel values
representing the intensity of the radio emission. The images were
downloaded in the form of FITS files, we save these files for fur-
ther processing. The celestial_capture function in our rgc
package can be used to download the images from SkyView.
It takes the survey name (e.g., FIRST), the coordinates of the
sources, and the file path as input and downloads the images
of the sources in the specified file path. In addition to that we
also provide a function celestial_capture_bulk to down-
load all sources in a catalog. It takes the catalog DataFrame,
survey name, and a directory path as input and downloads the
sources in the catalog to the specified directory.

3.3.2. Source Detection and Mask Generation

After downloading the images of the sources, we applied source
detection to identify the sources in the images. We used the
Python Blob Detector and Source Finder (PyBDSF) package9 to
detect the sources in the images. PyBDSF is a Python package
that provides tools for source detection and extraction in radio
images. It uses a multi-scale algorithm to detect sources in the
images and provides the positions, sizes, and flux densities of
the detected sources. We used PyBDSF to detect the sources in
the images and generate masks for the sources. We first use the
process_image function in PyBDSF to process the image and
detect the sources. The function takes the image following pa-
rameters:

– filename: The name of the FITS file containing the image.
– beam: Full width at half maximum (FWHM) of the beam,

specified as a tuple (major, minor, position angle) in degrees.
– frequency: The frequency of the image in Hz.
– thresh_isl: The threshold for island in number of sigma

above the mean.
9 https://pybdsf.readthedocs.io/en/latest/

– thresh_pix: Source detection threshold, threshold for is-
land peak in number of sigma above the mean.

This function generates a PyBDSF object that contains the
detected sources in the image. The object provides method
export_fits to export the detected sources as a FITS file, it
takes types of sources to export, in this case, we export the mask
of the sources so we set types to island_mask. It aslo takes
the output file name output_file and mask_dilation which
is the number of pixels to dilate the mask by. The generated mask
is saved as a FITS file in the specified output file. The frequency
of the FIRST survey is 1.4 GHz (1.4e9 Hz) and the beam size is
(5e-4, 5e-4, 0) degrees. We used a threshold of 3 sigma above the
mean for island detection, 5 sigma above the mean for peak de-
tection and zero dilation for ≈ 90% of the sources. In the remain-
ing cases, we used a tried and tested different values of threshold
and dilation to get the best mask. We choose the mask that covers
the source without including any other sources in the vicinity. To
ease of use we provide a function generate_mask in our rgc
package that takes the image file name, beam size, frequency,
threshold for island detection, threshold for peak detection, mask
dilation and output file name as input and generates and save the
mask for the sources in the image as a FITS file in the specified
output file. We also provide a function generate_mask_bulk
to generate masks for all images a given catalog. Given the cata-
log DataFrame, image directory, beam size, frequency, and out-
put directory, the function generates masks for all images in the
catalog and saves them in the output directory.

3.3.3. FITS to PNG Conversion

All the downloaded images and masks were in the FITS format,
which is not suitable for use in machine learning models. There-
fore, we converted the images and masks to Portable Network
Graphics (PNG) format, which is widely used for image pro-
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Table 1. Labelled dataset

Morphology Train Test Total

NAT 227 27 254
WAT 347 38 385

Total 574 65 639

cessing tasks. We used the following formula to convert the pixel
values of the images to the range [0, 255] for PNG conversion.

img =
img −min(img)

max(img) −min(img)
× 255 (1)

where image is the pixel values of the image, min(image) is
the minimum pixel value of the image, and max(image) is the
maximum pixel value of the image.

After extracting the pixel values of the images, we converted
the images to PNG format using the Python package Pillow10.

In our rgc package, we provide a function fits_to_png
to convert the FITS files to PNG format. The function takes the
FITS file name as input and converts the image to PNG format
and returns a image in the form of a PIL.Image object. We also
provide a function fits_to_png_bulk to convert all FITS files
in a given directory to PNG format. The function takes the di-
rectory path and output directory path as input and converts all
FITS files in the directory to PNG format and saves them in the
output directory.

3.3.4. Masking

After converting the images and masks to PNG format, we ap-
plied the masks to the images to mask out the sources in the im-
ages. As the mask comtains zeros for the background and ones
for the sources, we multiplied the pixel values of the images with
the pixel values of the masks to apply the masks to the images.

In our rgc package, we provide two functions mask_image
and mask_image_bulk to apply the masks to the images.
The mask_image function takes PIL.Image objects of the im-
age and mask as input and applies the mask to the image
and returns the masked image as a PIL.Image object. The
mask_image_bulk function takes the directory path of the im-
ages and masks and the output directory path as input and applies
the masks to all images in the directory and saves the masked im-
ages in the output directory.

3.4. Labelled dataset

Finally, after pre-processing the images of the sources, two ex-
perts further inspected the resulting images and labelled them as
WAT or NAT galaxies. In this process, 64 images were removed
due to poor quality or ambiguity in the classification.

Table 1 shows the distribution of the labelled dataset into
training and test sets. The training set contains 574 images, with
227 NAT galaxies and 347 WAT galaxies. The test set contains
65 images, with 27 NAT galaxies and 38 WAT galaxies. The
total dataset contains 639 images, with 254 NAT galaxies and
385 WAT galaxies.

10 https://python-pillow.org/
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4. The semi-supervised model

4.1. Group Equivariant Convolutional Neural Network

4.2. Feature extraction

BYOL

4.3. Projection head

4.4. Loss

4.5. Downstream training

5. Performance of the model

In this section, we will evaluate the performance of our pro-
posed model on the classification of bent radio AGNs. We have
used the following metrics to evaluate the performance of our
model: accuracy, precision, recall, and F1-score. In addition to
these metrics, we have also used the Receiver Operating Char-
acteristic (ROC) curve, Area Under the Curve (AUC) score, and
Expected Calibration Error (ECE) to evaluate the discriminative
ability and reliability of our model.

5.1. Confusion matrix

To visualize the output of the classification model in test data, we
used a confusion matrix. The confusion matrix is a table that is
often used to describe the performance of a classification model
on a set of test data for which the true values are known. The con-
fusion matrix shows four values: true positives (TP), true neg-
atives (TN), false positives (FP), and false negatives (FN). The
TP indicates the number of positive samples (i.e., WAT galaxies)
that were correctly classified as positive, while TN indicates the
number of negative samples (i.e., NAT galaxies) that were cor-
rectly classified as negative. FP indicates the number of negative
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samples that were incorrectly classified as positive, while FN
indicates the number of positive samples that were incorrectly
classified as negative. The confusion matrix for the classification
of bent radio AGNs is shown in Fig. 4.
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Fig. 4. Confusion matrix for the classification of bent radio AGNs,
showing the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

The confusion matrix shows that the model has correctly
classified 35 out of 39 WAT galaxies as WAT, and 16 out of 25
NAT galaxies as NAT. The model has also misclassified 4 WAT
galaxies as NAT and 10 NAT galaxies as WAT.

5.2. Classification metrics

Based on the output shown in the confusion matrix, we calcu-
lated the following classification metrics: accuracy, precision, re-
call, and F1-score. The accuracy of the model is the proportion
of correctly classified samples to the total number of samples.
The precision of the model is the proportion of TPs to the sum
of TPs and FPs, it measures how many of the samples classified
as positive are actually positive. We can calculate the precision
using the following formula:

Precision =
T P

T P + FP
The recall of the model is the proportion of TPs to the sum

of TPs and FNs, it measures how many of the actual positive
samples are correctly classified as positive. We can calculate the
recall using the following formula:

Recall =
T P

T P + FN
The F1-score is the harmonic mean of precision and recall,

it is a measure of the balance between precision and recall. We
can calculate the F1-score using the following formula:

F1-score = 2 ×
Precision × Recall
Precision + Recall

We calculated the accuracy, and class-specific precision, re-
call, and F1-score for the classification of bent radio AGNs, and
reported the results in Table 2.

Table 2. Performance of the model on the classification of bent radio
AGNs, showing the accuracy, precision, recall, and F1-score for WAT
and NAT galaxies.

Accuracy[%] Precision Recall f1-score

WAT
87.5

0.8947 0.8718 0.9189
NAT 0.8148 0.88 0.8462

Our model achieved an accuracy of 87.5% on the classifica-
tion task, with a precision of 0.8947, recall of 0.8718, and F1-
score of 0.9189 for WAT galaxies. For NAT galaxies, the model
achieved a precision of 0.8148, recall of 0.88, and F1-score of
0.8462. These results indicate the effectiveness of our proposed
model in classifying bent radio AGNs.

5.3. Discriminative ability

In addition to the results obtained from the classification met-
rics, we further evaluated the discriminative ability of our model
using ROC curves and the corresponding AUC scores. The ROC
curve is a graphical representation of the performance of a binary
classifier system. It plots the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold settings (i.e.,
different probability values for classifying a sample as positive).
The TPR and FPR are defined as follows:

TPR =
T P

T P + FN
, FPR =

FP
FP + T N

The ROC curve shows the trade-off between correctly catch-
ing positive cases and mistakenly identifying negative cases ac-
cross all classification thresholds. While the ROC curve is a use-
ful tool for visualizing the performance of a classifier, the Area
Under the Curve (AUC) score provides a single numeric value
to represent the classifier’s performance. It ranges from 0 to 1,
with a score of 1 indicating a perfect classifier and a score of 0.5
indicating a classifier that performs no better than random. The
ROC curves for the classification of bent radio AGNs are shown
in Fig. 5, along with the AUC score for WAT and NAT galaxies.
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ROC curve (WAT) (AUC = 0.88)
ROC curve (NAT) (AUC = 0.88)
Random guess (AUC = 0.50)

Fig. 5. Class-specific ROC curves for the classification of bent radio
AGNs, showing the Area Under the Curve (AUC) score for WAT and
NAT galaxies.

The ROC curves for both WAT and NAT galaxies are way
above the random guess line, and close to the top-left corner
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Fig. 6. Precision-Recall (PR) curves for the classification of bent radio
AGNs, showing the Area Under the Curve (AUC-PR) score for WAT
and NAT galaxies.

of the plot (i.e, curve of perfect classifier), indicating that our
model has a high discriminative ability. The AUC score further
confirms this, with a numerical value of 0.88 for both WAT and
NAT galaxies. These high AUC scores indicate that our model
can effectively distinguish between WAT and NAT galaxies with
a minimal rate of false positives, irrespective of the classification
threshold.

ROC curve and AUC score can sometimes be misleading, es-
pecially when the dataset is imbalanced. In our case, the dataset
is imbalanced, with more WAT galaxies than NAT galaxies. To
address this issue, another popular metric called the Precision-
Recall (PR) curve and the corresponding AUC-PR score can be
used. The PR curve plots the precision against the recall at vari-
ous threshold settings. The PR curve is particularly useful when
the dataset is imbalanced, as it focuses on the positive class (i.e.,
WAT galaxies) and provides a more informative view of the clas-
sifier’s performance. By focusing on the performance of the pos-
itive class, the PR curve helps to provide a clearer understanding
of how well the classifier identifies galaxies in an imbalanced
dataset. Similar to the ROC curve, the area under the PR curve
(AUC-PR) provides a single numeric value to represent the clas-
sifier’s performance. The AUC-PR ranges from 0 to 1, with 1
indicating a perfect classifier. A higher AUC-PR indicates better
overall performance. The PR curves for the classification of bent
radio AGNs are shown in Fig. 6, along with the AUC-PR score
for WAT and NAT galaxies.

The PR curves for WAT and NAT galaxies is above the hor-
izontal line at 0.39, which indicates that the model is perform-
ing better than a random classifier The AUC-PR score for WAT
galaxies is 0.87 and for NAT galaxies is 0.86, which indicates
that the model has a good discriminative ability for both classes,
despite the class imbalance in the dataset.

5.4. Model calibration

Model calibration is an important aspect of evaluating the relia-
bility of a classifier. The aim is to align the predicted probabili-
ties of the model with the true probabilities of the data to ensure
that the model’s predictions are reliable and accurate. One way
to evaluate the calibration of a classifier is to use the Expected
Calibration Error (ECE) metric. To evaluate the calibration of
our model, we calculated the ECE for the classification of bent
radio AGNs. The ECE is a measure of the difference between the

predicted probabilities and the true probabilities of the model. It
is calculated by dividing the samples into M equally spaced bins
based on the predicted probabilities and then calculating the dif-
ference between the average predicted probability and the true
probability for each bin. The ECE is the weighted average of
these differences, with the weights being the proportion of sam-
ples in each bin.

ECE =
M∑

m=1

Bm

N
|acc(Bm) − conf(Bm)|

where Bm is the number of samples in bin m, N is the total num-
ber of samples, acc(Bm) is the accuracy of the model in bin m,
and conf(Bm) is the confidence of the model in bin m. The ac-
curacy and confidence of the model in bin m are calculated as
follows:

acc(Bm) =
1

Bm

∑
i∈Bm

I(ŷi = yi), conf(Bm) =
1

Bm

∑
i∈Bm

pi

where yi is the true label of sample i, ŷi is the predicted label
of sample i, pi is the predicted probability of sample i, and I is
the indicator function. The ECE ranges from 0 to 1, with a lower
ECE indicating better calibration. The ECE for the classification
of bent radio AGNs is shown in Fig. 7.
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Fig. 7. Expected Calibration Error (ECE) for the classification of bent
radio AGNs, showing the ECE curve for WAT and NAT galaxies across
different predicted probabilities.

From the ECE plot, we can see that the model is well-
calibrated, with the ECE curve close to the diagonal line and the
score being close to 0.11 for both WAT and NAT galaxies. This
indicates that the model’s predicted probabilities are close to the
true probabilities, and the model is reliable in its predictions.

All these results indicate that our proposed model is effec-
tive in classifying bent radio AGNs, with high accuracy, preci-
sion, recall, and F1-score, good discriminative ability, and reli-
able calibration.

6. Discussion

Xu is determined by experiments described in Sec 6.2.
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6.1. Where is the the model giving attention? DONE

success story: 1 wat, 1 nat single source 2-panel plot
failure: multiple source what percentage
failure: spurious source brighter, what percentage
brightness vs. attention

6.2. Do spurious sources affect performance? DONE

Check where the model is paying attention on the image.
Use this info in Sec. 5

6.3. Does data shift affect BYOL?

prior probability shift
Xu has 20k unlabelled sources plus different number (10 to

100 per cent) of labelled sources.
Xl

6.4. How does class imbalance affect model performance?

Plot: accuracy vs. imbalance %

6.5. How does small sources affect the accuracy of SSL?

recreate something like Figure 3 of ICML
Test accuracy vs. minimum angular size included

7. Conclusion
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