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Radio Galaxies: Types and Morphology

Radio galaxies are specialized Active Galactic Nuclei (AGN), predominantly emitting radio waves.
These waves result from charged particles accelerated by their central supermassive black holes.
Notably, Sygnus A, discovered in 1937, remains the brightest detected source. Radio galaxies
portray vast morphological diversities e.g. FRI, FRII, Head‐tail, Ringlike, X‐Shaped etc.

(a) Fanaroff‐Riley Type‐I (FRI) (b) Fanaroff‐Riley Type‐II (FRII)

Figure 1. Examples of Fanaroff‐Riley galaxies. (a) FRI galaxy, characterized by peak radio emission near the core
and darker edges of the lobes. (b) FRII galaxy, characterized by peak radio emission at the edge of the lobes far
from the core.

Importance and Challenges in Radio Galaxy Classification

Why Classification Matters:

Provides insight into the formation and evolution of radio galaxies.
FR classification reveals the AGN’s power and radio emission distribution.
Sheds light on the role of AGN in galactic evolution and interactions within its cosmic
surroundings.
Facilitates comparisons, trend identification, and hypothesis formulation about object
nature.

The Daunting Challenge: With advancements in telescopes like the Square Kilometre Array
(SKA), a flood of data is made available. This immense volume, combined with varied galaxy
orientations, makes manual classification exceedingly challenging.

Our Innovative Contribution: In response to these challenges, our approach utilizes artificial
intelligence, particularly the semi‐supervised Group Equivariant Convolutional Neural Net‐
work (G‐CNN). This ensures proficient classification, especially in scenarios where labeled
data is scarce.

Related Deep-Learning Methods Used

Group Equivariant CNN (G‐CNN): A specialized network maintaining equivariance to input
symmetries, leveraging group convolutions to capture galaxy orientations effectively [4].

(f ∗ ϕ)(g) =
∑
h∈G

f (h)ϕ(h−1g)

Contrastive Learning (SimCLR): Self‐supervised, it learns by maximizing agreement between
two views of the same data. It uses contrastive loss to ensure similarity between features of
the same data while contrasting against different samples [1].

LSimCLR = − log exp(sim(zi, zj)/τ )∑2n
k=1 1[k ̸=i] exp(sim(zi, zk)/τ )

Bootstrap Your Own Latent (BYOL): A self‐supervised method adopting ”global contrastive
learning”. BYOL [2] trains an online and a target network, aiming for shared representations
without needing explicit data augmentation or negative samples.
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Our Semi-Supervised Approach

Task‐agnostic self‐supervised learning:
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Figure 2. Illustration of (a) SimCLR and (b) BYOL for self‐supervised learning. Replaced ResNet‐50 with
E(2)‐Equivariant Steerable G‐CNN.

Task‐specific fine‐tuning:

Figure 3. Illustration of mdoel used for fine‐tuning and FR classification.

Datasets Used for Galaxy Classification

Our study primarily employs images from the Karl G. Jansky VLA’s FIRST survey:

Dataset‐U: Sourced from the Radio Galaxy Zoo (RGZ), comprises 9,700 images (each
150 × 150 pixels) for self‐supervised learning [5].
Dataset‐F: A subset of the MiraBest Batched Dataset [3], used for fine‐tuning and FRI,
FRII galaxy classifications.

Table 1. Numerical Identifiers of MiraBest Batched Dataset.

Digit 1 Digit 2 Digit 3

1 ‐ FRI 0 ‐ Confident 0 ‐ Standard
2 ‐ FRII 1 ‐ Uncertain 1 ‐ Double‐double
3 ‐ Hybrid 2 ‐ Wide‐angle Tail

3 ‐ Diffuse
4 ‐ Head‐tail

Table 2. Source counts in Dataset‐F.

Morphology Train Test Total

FRI 348 49 397
FRII 381 55 436

Total 729 104 833

Results - Convergence Analysis
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Figure 4. Convergence plots comparing fine‐tuned SimCLR and BYOL encoders to a supervised G‐CNN on
Dataset‐F. Displaying mean and standard deviation of (a) training loss and (b) validation loss over 5‐fold
cross‐validation.

Results - Cluster Quality Analysis
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Figure 5. t‐SNE visualizations of representations from the fine‐tuned encoders of (a) BYOL, (b) SimCLR, and (c)
Supervised G‐CNN. Blue points denote FRI class, and orange for FRII. Improved clustering in our models,
indicated by Silhouette and Davies Bouldin scores.

Results - Performance Comparison

Both models, BYOL and SimCLR, consistently outperformed in all classification metrics. The best
metrics are highlighted in bold, and the second‐best is underlined.

FRI FRII

Accuracy[%] Precision Recall f1‐score Precision Recall f1‐score

Semi‐supervised SimCLR 95.77 ± 0.90 0.98 ± 0.061 0.93 ± 0.018 0.95 ± 0.011 0.94 ± 0.013 0.98 ± 0.014 0.96 ± 0.009
Semi‐supervised BYOL 97.12 ± 0.40 0.97 ± 0.008 0.96 ± 0.009 0.97 ± 0.005 0.96 ± 0.007 0.98 ± 0.008 0.97 ± 0.004
Supervised G‐CNN 94.80 ± 0.90 0.93 ± 0.012 0.96 ± 0.010 0.94 ± 0.009 0.96 ± 0.009 0.94 ± 0.012 0.95 ± 0.009

Table 3. Performance metrics comparing Semi‐supervised models against Supervised methods. Our
Semi‐supervised approach demonstrates marked improvement.

Results - ROC Analysis and Statistical Significance
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Figure 6. ROC curves for the fine‐tuned encoders of BYOL, SimCLR, and the Supervised model, illustrating radio
galaxy classification performance. Corresponding AUC scores are also provided.

Paired t‐tests comparing our models to the supervised G‐CNN showed significant improvements
with SimCLR (p‐value ≈ 0.08) and BYOL (p‐value ≈ 0.0038), emphasizing the superiority of our
semi‐supervised approach.
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