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Abstract. Deep learning models often face performance degradation
due to distribution shifts between training and testing data. Test-Time
Adaptation (TTA) has emerged as a solution, allowing models to adapt
dynamically during deployment without access to source data, making
it suitable for privacy-sensitive domains. In federated learning scenar-
ios, where clients operate on decentralized and heterogeneous data, per-
forming TTA is particularly challenging due to the dynamic nature of
data distributions and the need for privacy preservation. To address
these challenges, we propose Federated Continual Test-Time Adapta-
tion (FedCTTA), a new framework using teacher student based knowl-
edge distillation that leverages batch normalization (BN) layer updates
and similarity-based collaboration among clients to enable efficient and
privacy-preserving adaptation. Our approach significantly reduces band-
width usage by limiting parameter sharing to BN layers and enhances
model accuracy in non-stationary environments through dynamic and
collaborative adaptation. Experimental results on benchmark datasets
demonstrate that FedCTTA achieves superior performance compared
to state-of-the-art methods, particularly in scenarios involving tempo-
ral and spatial heterogeneity. This work highlights the potential of com-
bining TTA with federated learning to address real-world challenges in
privacy-sensitive and dynamic environments.

Keywords: Federated learning · Continual Test-Time Adaptation · An-
other keyword.

1 Introduction

Deep learning models experience performance degradation when a distribution
shift occurs between the training and testing data. For instance, a self-driving car
system trained on images captured in clear weather conditions may perform well
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in detecting pedestrians, traffic signs, and obstacles under sunny skies. However,
during deployment, adverse weather conditions such as fog, rain, or, snow can
significantly impair its ability to recognize objects, if these scenarios were not
part of the training data. To address distribution shifts, researchers have explored
approaches such as Domain Generalization (DG)[2] and Domain Adaptation
(DA)[cite]. DG aims to improve model robustness to unseen domains by training
on diverse source domains, while DA focuses on adapting a model trained on one
domain to perform well on a related target domain. Despite their success, these
methods have inherent limitations: DG depends on sufficient domain diversity
during training, and DA typically requires access to source domain data, which
is not always practical due to privacy or storage constraints.

Test-Time Adaptation (TTA) has emerged as a promising alternative, en-
abling models to adapt during deployment using only incoming test samples.
Unlike Domain Adaptation (DA) and Domain Generalization (DG), TTA oper-
ates without requiring access to the original training data, making it particularly
suitable for scenarios where sharing source data is restricted due to privacy or
logistical constraints. For example, TTA can allow a self-driving car to adapt
dynamically to foggy conditions in real time, utilizing only test data from the
foggy environment without needing to revisit the original dataset.

In recent years, data privacy has become a critical concern across industries,
driven by the growing awareness of data misuse and stringent privacy regulations
such as GDPR[cite] and CCPA[cite]. This shift towards privacy-conscious prac-
tices poses significant challenges for traditional machine learning approaches,
which often rely on centralized data access. Federated Learning (FL) [cite] has
emerged as a prominent decentralized approach for collaborative model training.
By enabling multiple clients to jointly learn a global model without exchanging
raw data, FL effectively addresses privacy concerns while accommodating a wide
range of applications across domains such as healthcare, finance, and autonomous
systems.

In such decentralized settings, performing Test-Time Adaptation (TTA) is
a challenging task due to the heterogeneous and continually changing data dis-
tributions across clients. While clients can adapt locally based on their own
test-time data, this approach may not fully capture the broader environmental
shifts. Collaborative adaptation, where clients share insights from their diverse
data distributions, has the potential to improve model performance in dynamic
environments. However, collaboration is difficult due to privacy concerns and
the challenges of aligning adaptation strategies across clients with varying data
distributions. This makes achieving effective collaboration while maintaining pri-
vacy and ensuring robust performance a non-trivial problem.

Recent work has explored Test-Time Adaptation (TTA) in federated learning
settings. For example, FedICON[?] uses contrastive learning to fine-tune models
across heterogeneous client environments, while ATP[?] introduces client-specific
adaptation by adjusting module-specific adaptation rates. However, these ap-
proaches face significant challenges: they assume static test-time distributions,
fail to fully utilize inter-client collaborations. Methods like FedTSA[?], which



Abbreviated paper title 3

leverage temporal-spatial correlations based on local feature means for person-
alized model aggregation, raise privacy concerns. The use of local feature statis-
tics can potentially reveal sensitive information through the reconstruction pro-
cess. Additionally, transmitting full model parameters from clients to the central
server increases communication costs, further complicating the implementation
of such methods in resource-constrained environments.

To address these limitations, we propose Federated Continual Test-Time
Adaptation (FedCTTA), a novel approach that balances privacy, efficiency, and
performance. Our method updates only the batch normalization (BN) layers of
the model, reducing bandwidth overhead while ensuring adaptability. By lever-
aging similarity between BN layers, FedCTTA enables dynamic client collabo-
ration without sharing sensitive information such as local feature means. Our
contributions are as follows:

✧ Eliminates the need for sharing local feature means by utilizing BN layer
similarity for client collaboration preserving privacy and security

✧ Limits parameter sharing to BN layers, significantly reducing bandwidth
usage.

✧ Enhances model accuracy in dynamic environments through continual test-
time adaptation and client collaboration.

2 Related Works

2.1 Federated Learning

Federated learning is a decentralized approach to training machine learning mod-
els while keeping data localized, thereby addressing privacy and security con-
cerns. McMahan et al. [5] introduced the FederatedAveraging algorithm, enabling
efficient model training on unbalanced and non-IID data with significantly re-
duced communication costs. Li et al. [4] proposed using a globally shared dataset
to mitigate performance degradation in non-IID data settings, improving model
accuracy by up to 30% on skewed datasets like CIFAR-10. Zhao et al. [13] in-
troduced FedProx, an extension of FedAvg, to handle statistical and system
heterogeneity, ensuring robust convergence and improving accuracy by 22% in
highly heterogeneous settings

2.2 Test Time Adaptation

Test-Time Adaptation (TTA) methods aim to enable models to adapt dynam-
ically to distribution shifts without access to source data. TENT [9] intro-
duces a lightweight adaptation approach by minimizing entropy through up-
dates to BatchNorm parameters, achieving state-of-the-art results on corrupted
datasets like ImageNet-C while being efficient for online updates. DUA [6] ex-
tends this idea by dynamically adapting BatchNorm statistics with minimal
unlabeled test data, showcasing robust performance gains in real-time scenarios
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like autonomous driving. EATA [7] addresses challenges of catastrophic forget-
ting and noisy updates by introducing an entropy-based sample selection strat-
egy and a Fisher regularizer to constrain significant model parameters. CoTTA
[10] further pushes the boundaries by tackling non-stationary environments with
weight-averaged and augmentation-averaged pseudo-labeling, alongside stochas-
tic restoration of source weights to preserve long-term knowledge, achieving su-
perior results on continually changing domains. Together, these methods high-
light diverse strategies to enhance TTA efficiency and robustness across various
applications.

2.3 Federated Test Time Adaptation

Adaptive Test-Time Personalization (ATP) [1] adaptively learns module-specific
adaptation rates based on inter-client distribution shifts. Clients simulate unsu-
pervised adaptation during training, refining adaptation rates to enhance per-
formance on unseen, unlabeled data. FedTHE+ [3] ensembles global and lo-
cal classifiers for robust test-time personalization and performs unsupervised
fine-tuning, significantly improving accuracy across in-domain (ID) and out-
of-domain (OOD) distributions. FedICON [8] employs contrastive learning to
capture invariant knowledge from inter-client heterogeneity during training and
uses self-supervision for smooth test-time adaptation, tackling intra-client het-
erogeneity. While leveraging inter-client heterogeneity to address test-time shifts,
FedICON requires extensive contrastive learning, which may be computationally
intensive for resource-constrained clients. Zhang et al. [12] developed Temporal-
Spatial Aggregation (TSA), a server-side module that captures temporal and
spatial correlations among clients during dynamic test-time adaptation. TSA is
self-supervised and robust to temporal-spatial heterogeneity, enabling collabora-
tive adaptation in multi-device settings. TSA assumes synchronized client
activity, limiting its applicability in asynchronous or sporadic com-
munication settings. Xu et al. [11] proposed FedCal, a lightweight framework
that performs test-time classifier calibration using estimated label priors from
global model predictions. FedCal handles label shifts efficiently without extra
labeled data, ensuring flexibility for unseen clients.

3 Methodology

3.1 Problem Definition

Continual test-time adaptation (TTA) aims to address the challenge of adapt-
ing machine learning models to sequentially arriving data from non-stationary
target domains. This is particularly challenging in federated settings where each
client observes different data from similar or distinct domains, and these domains
continually change over time. Unlike traditional domain adaptation methods,
continual TTA does not assume access to the source domain data during de-
ployment.
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In this setting, we consider a federated system with N clients, denoted
C = {C1, C2, . . . , CN}. Each client encounters a stream of data D(i)

t over time
t, originating from dynamically evolving target domains. The goal is to adapt
the model θ at each client to maintain performance on the incoming data while
facilitating knowledge sharing across clients, without compromising data pri-
vacy. This problem is further complicated by the need to prevent catastrophic
forgetting of earlier knowledge while reducing error accumulation over time.

3.2 Local Test-time Adaptation: A Knowledge Distillation
Approach

At each client, we employ a mean teacher framework to perform local test-time
adaptation. The framework consists of a student model fs and a teacher model
ft and works based on a self-supervised training. The teacher model generates
pseudo-labels that guide the student model’s adaptation to the evolving target
data.

The student model updates its parameters by the consistency loss between
the student and the teacher predictions. The adaptation is guided by minimizing
the consistency loss as symmetric cross-entropy loss in student model:

LSCE =
1

2
(H(yt, fs(x)) +H(fs(x), yt)) ,
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where H represents the cross-entropy loss, yt is the teacher’s prediction, and x
denotes the input data. This loss function ensures that the student aligns closely
with the teacher’s predictions.

To reduce error accumulation challenges of continual adaptation, the teacher
model is updated using an exponential moving average (EMA) of the student
model’s weights which aggregates knowledge from previous iterations and is
therefore more robust to noise:

θ
(ft)
t = αθ

(ft)
t−1 + (1− α)θ

(fs)
t ,

where α is the decay factor for EMA. This update mechanism ensures that
the teacher model retains a memory of past states, reducing the likelihood of
catastrophic forgetting.

3.3 Similarity-Aware Aggregation

In a federated setting, knowledge sharing among clients is crucial for improving
performance across the system. To achieve this while preserving data privacy,
we propose a similarity-aware aggregation strategy. This approach aggregates
the parameters of student models from different clients based on their similarity,
enabling collaborative adaptation without requiring data exchange.

The aggregation mechanism starts with computing the similarity between
different clients. For each client Ci, let θ(i)s represent the parameters of its student
model. The aggregated parameters θagg

s are calculated as:

θagg
s =

N∑
i=1

wiθ
(i)
s ,

where wi is the similarity-based weight assigned to the client Ci. These weights
are calculated using one of two similarity measures.

The first measure calculates the similarity between the parameters of the
student models for all clients. Specifically, the similarity between two clients’
models is measured using a function such as cosine similarity. The similarity
scores are then normalized using a softmax function to produce the weights.

The second measure considers the output tendency of each client’s student
model. Each client maintains an exponential moving average (EMA) of its cur-
rent output to calculate output tendencies, denoted as ȳ

(i)
t . The similarity is

computed based on the output tendencies between clients. This approach lever-
ages the slow-moving nature of the teacher model and the fast updates of the
student model to incorporate temporal dynamics into the similarity calculation.
The similarity scores are normalized using a softmax function to determine the
aggregation weights.

The aggregated model θagg
s is distributed back to the clients, serving as the

updated student model for the next time step. By aligning the models of clients
with similar domains, this process facilitates knowledge sharing between clients
while ensuring not to access of individual clients’ data is preserved.
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4 Experimental Results

4.1 Implementation Details

4.2 Baselines

4.3 Performance Analysis

4.4 Decoding Collaboration Relationship

Table 1. Performance comparison for all corruptions

NIID IID

Method CIFAR10-C CIFAR100-C CIFAR10-C CIFAR100-C

TTA-grad TTA-bn TTA-grad TTA-bn TTA-grad TTA-bn TTA-grad TTA-bn

No-Adapt 35.19±0.27 35.19±0.27 30.22±0.12 30.22±0.12 35.19±0.27 35.19±0.27 30.22±0.12 30.22±0.12
Local 49.37±0.32 56.93±0.26 52.85±0.32 55.99±0.34 49.37±0.32 56.93±0.26 52.85±0.32 55.99±0.34
FedAvg 54.40±0.36 56.52±0.21 51.63±0.17 57.13±0.43 57.28±0.19 61.29±0.04 62.60±0.31 63.96±0.31
FedProx 53.86±0.62 56.52±0.21 53.00±0.38 57.13±0.43 55.03±0.29 61.29±0.04 62.27±0.67 63.96±0.31
FedAMP 55.88±0.24 57.27±0.25 55.57±0.46 58.62±0.39 56.43±0.77 57.26±0.07 61.70±0.63 58.24±0.44
pFedGraph 55.68±0.74 57.24±0.24 57.01±0.38 58.73±0.38 56.79±0.53 57.44±0.09 62.52±0.30 58.73±0.63
FedTSA 57.32±0.36 60.27±0.23 58.03±0.38 62.93±0.29 57.41±0.12 61.56±0.52 62.63±0.36 63.72±0.34
Ours(V1) 65.5 63.14 65.12 63.69
Ours(V2) 64.59 60.08 64.49
Ours(V3) 65.49 62.54 65.12 63.61
Ours(V3) 64.58 60.08 64.59 59.97

Table 2. Performance comparison under spatial IID and temporal heterogeneity

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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C
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-C

Source 37.30 38.44 26.08 28.99 33.92 27.44 30.21 34.53 32.89 10.63 36.46 23.53 37.51 41.43 43.70 30.54
Local 61.11 61.94 54.13 61.65 55.47 57.93 60.58 59.27 59.13 45.76 63.18 30.63 59.53 62.96 63.78 57.14

FedAvg 65.34 66.04 59.22 65.97 59.74 62.17 64.95 63.32 63.02 48.99 67.70 33.04 64.41 67.71 68.90 61.37
FedAMP 61.22 62.15 54.39 61.81 55.63 58.10 60.81 59.53 59.39 45.91 63.44 30.80 59.83 63.24 64.02 57.35

pFedGraph 61.26 62.21 54.44 61.82 55.75 58.09 60.81 59.55 59.33 45.90 63.46 30.83 59.80 63.28 64.03 57.37
FedTSA 65.28 66.06 59.21 66.64 59.93 62.49 65.25 63.11 63.57 49.55 67.88 32.97 64.56 67.70 69.28 61.57

Ours

C
IF

A
R

10
0-

C

Source 14.05 16.64 34.76 41.60 19.35 38.15 43.32 36.48 27.63 20.96 54.91 17.24 35.02 11.45 41.73 30.22
Local 51.59 53.02 50.26 65.13 50.77 63.23 65.07 58.10 58.17 51.10 66.70 61.25 56.67 59.98 51.57 57.51

FedAvg 57.33 58.60 56.74 69.07 57.51 68.94 70.92 64.29 64.19 57.44 72.40 67.36 63.70 66.33 57.56 63.50
FedAMP 51.96 53.39 50.47 65.52 51.12 63.66 65.49 58.36 58.56 51.39 67.10 61.66 57.11 60.39 52.01 57.88

pFedGraph 52.05 53.42 50.48 65.60 51.19 63.61 65.49 58.39 58.64 51.39 67.08 61.64 57.14 60.46 52.06 57.91
FedTSA 57.56 58.75 57.23 69.73 56.27 69.18 71.05 64.33 64.60 56.44 73.10 67.77 63.30 66.58 58.21 63.61

Ours
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Table 3. Performance comparison under spatial heterogeneity and temporal IID.
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Source 37.30 38.44 26.08 28.99 33.92 27.44 30.21 34.53 32.89 10.63 36.46 23.53 37.51 41.43 43.70 30.54
Local 55.27 52.70 56.46 48.25 55.30 50.87 58.25 46.40 55.58 52.45 58.48 45.80 51.75 56.12 49.00 52.85

FedAvg 61.49 56.33 60.15 50.26 61.14 53.02 63.64 50.17 60.02 53.88 63.53 50.95 55.86 59.55 52.36 56.82
FedAMP 62.04 57.12 61.29 52.32 61.83 55.28 63.87 51.69 60.83 55.89 63.94 52.16 56.70 61.32 53.65 58.00

pFedGraph 61.66 56.41 61.01 51.87 61.18 54.44 63.70 51.60 60.23 55.17 63.44 52.42 56.46 60.22 53.56 57.56
FedTSA 62.16 57.59 61.72 52.58 61.91 55.36 63.96 50.87 61.33 56.67 64.36 51.37 57.15 61.78 53.23 58.14

Ours-v1(FM) 65.12
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Source 14.05 16.64 34.76 41.60 19.35 38.15 43.32 36.48 27.63 20.96 54.91 17.24 35.02 11.45 41.73 30.22
Local 50.68 54.84 56.29 55.56 51.77 54.06 59.04 51.24 54.80 54.43 57.43 51.30 53.15 57.56 54.87 54.47

FedAvg 52.14 43.19 63.30 48.91 53.90 49.31 65.61 46.71 54.31 49.38 61.93 45.47 51.57 57.00 56.34 53.27
FedAMP 62.04 57.12 61.29 52.32 61.83 55.28 63.87 51.69 60.83 55.89 63.94 52.16 56.70 61.32 53.65 58.00

pFedGraph 61.66 56.41 61.01 51.87 61.18 54.44 63.70 51.60 60.23 55.17 63.44 52.42 56.46 60.22 53.56 57.56
FedTSA 57.33 58.60 56.74 71.07 57.51 68.94 70.92 64.29 64.19 57.44 72.40 67.36 63.70 66.33 57.56 63.63

Ours

Table 4. The experimental scenario and performance comparison of the case study.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Client 1-4

G
au

ss
ia

n

Sh
ot

Im
pu

ls
e

D
ef

oc
us

G
la

ss

M
ot

io
n

Zo
om

Sn
ow

Fr
os

t

Fo
g

B
ri
gh

tn
es

s
C

on
tr

as
t

E
la

st
ic

P
ix

el
at

e

Jp
eg

M
ea

n

Client 5-7

Sh
ot

Im
pu

ls
e

D
ef

oc
us

G
la

ss

M
ot

io
n

Zo
om

Sn
ow

Fr
os

t

Fo
g

B
ri
gh

tn
es

s

C
on

tr
as

t

E
la

st
ic

P
ix

el
at

e

Jp
eg

G
au

ss
ia

n

M
ea

n

Client 8-10

Jp
eg

P
ix

el
at

e

E
la

st
ic

C
on

tr
as

t
B
ri
gh

tn
es

s

Fo
g

Fr
os

t

Sn
ow

Zo
om

M
ot

io
n

G
la

ss

D
ef

oc
us

Im
pu

ls
e

Sh
ot

G
au

ss
ia

n

M
ea

n

No-Adapt 20.85 19.55 34.65 26.70 33.40 33.45 35.45 31.80 27.15 36.30 31.75 27.70 25.80 20.40 23.75 28.58
FedAMP 48.00 54.75 61.35 53.30 60.05 61.60 62.30 59.05 58.60 58.30 52.15 54.75 54.45 51.65 54.80 56.34

pFedGraph 47.00 51.90 61.05 51.20 58.45 62.50 63.25 59.75 55.95 58.55 50.30 54.00 52.50 50.80 53.65 55.39
FedTSA 48.95 61.15 62.25 54.90 60.15 63.75 63.75 63.05 58.35 59.90 54.00 58.15 58.15 57.45 56.40 58.69

Ours
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5 Ablation Study

6 Conclusion

This paper introduces FedCTTA, an approach to continual test-time adap-
tation in federated learning settings. By leveraging batch normalization layer
updates and similarity-based collaboration among clients, FedCTTA addresses
key challenges such as privacy preservation, bandwidth efficiency, and adapta-
tion in dynamic environments. The proposed framework eliminates the need
for sharing sensitive local feature statistics, significantly reducing communica-
tion costs while enabling effective inter-client collaboration. Experimental eval-
uations across diverse scenarios validate the efficacy of FedCTTA, showcasing
improvements in model performance under temporal and spatial heterogeneity.
Our findings demonstrate the potential of federated TTA frameworks to enhance
model robustness in privacy-conscious and resource-constrained settings. Future
work may explore incorporating additional privacy-preserving mechanisms and
extending the framework to handle asynchronous communication among clients.
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