

FedCTTA: A Collaborative Approach to Continual Test-Time Adaptation in Federated Learning

Rakibul Hasan Rajib*, Md Akil Raihan Iftee*, Mir Sazzat Hossain*, A.K.M. Mahbubur Rahman*, Sajib Mistry†, M. Ashraful Amin*, Amin Ahsan Ali* *Center for Computational & Data Sciences, Independent University, Bangladesh †Curtin University, Australia

International Joint Conference on Neural Networks (IJCNN) - 2025 Presenter: Rakibul Hasan Rajib

Motivation

Federated Learning(FL)

- Collaborative model training across clients
- No raw data sharing \rightarrow ensures privacy

Challenge: Performance degradation due to distribution shifts

Test-time Adaptation (TTA) Offers a Promising Solution

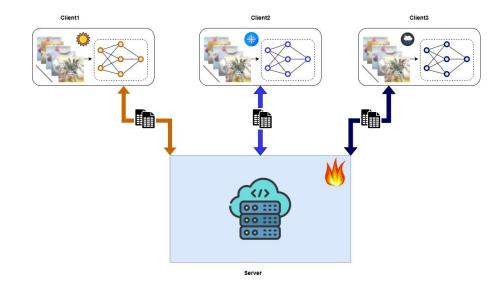
- Models adapt using only test samples
- Adapts to distribution shifts at inference

Challenges of TTA in FL

- Heterogenous and evolving distributions
- Privacy risks from feature sharing
- Scalability issues

Proposed Method

• FedCTTA – a privacy-preserving and computationally efficient framework for continual test-time adaptation



Limitations of Prior Work

FedICON:

• High computational demands

ATP:

- Assumes static test-time distributions
- No inter-client knowledge sharing

FedTHE+:

• Struggles with severe out-of-distribution (OOD) data

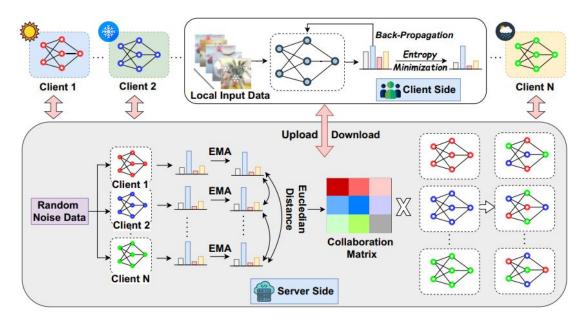
FedTSA:

- Privacy risks from sharing local feature stats
- Requires server-side learning
- Scalability issues due to memory bank overhead

Key Contributions

- Similarity-aware aggregation based on functional similarity
- No sharing of local feature embeddings, ensuring data security and mitigating privacy risks
- Eliminates server-side training, reducing computational overhead
- Constant memory footprint, enabling scalability to many clients

Federated Continual Test-Time Adaptation (FedCTTA)



- Local adaptation via entropy minimization or BN statistics updates
- Server computes similarity using model outputs on random noise samples
- Personalized aggregation without sharing raw data or features

Federated Continual Test-Time Adaptation (FedCTTA)

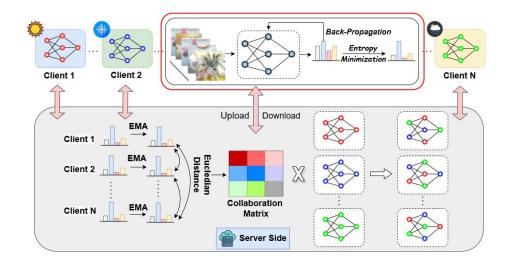
Client Side - Local Adaptation

• TTA-grad: minimizes entropy and updates all model parameters

$$H(p) = -\sum_{k=1}^{K} p_k \log(p_k)$$
$$\mathcal{L}_{ent} = \frac{1}{|\mathcal{D}_t^{(i)}|} \sum_{x \in \mathcal{D}_t^{(i)}} H(f_{\theta_i}(x))$$

 TTA-bn: updates only BatchNorm activation statistics without requiring backpropagation

$$\begin{split} \mu_i^{\text{new}} &= \mathbb{E}_{x \sim \mathcal{D}_t^{(i)}}[x] \\ \sigma_i^{2,\text{new}} &= \text{Var}_{x \sim \mathcal{D}_t^{(i)}}(x) \end{split}$$



Federated Continual Test-Time Adaptation (FedCTTA)

Server Side - Similarity-aware Aggregation

- Server aggregates models based on functional similarity.
- For each client i, server computes mean logits using random noise samples

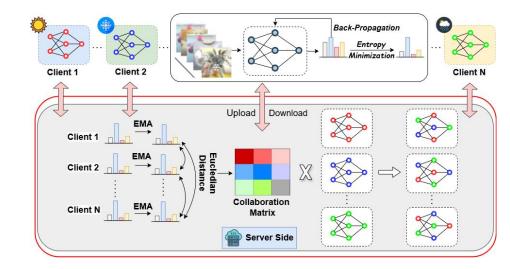
$$\mu_i = \frac{1}{M} \sum_{k=1}^M f_{\theta_i}(z_k)$$

• For clients i and j, similarity is:

$$D_{ij} = -\|\mu_i - \mu_j\|_2$$

• New model for client i using weighted aggregation:

$$\theta_i^{\text{new}} = \sum_{j=1}^K \frac{\exp(D_{ij})}{\sum_{k=1}^K \exp(D_{ik})} \theta_j$$



Experimental Setup

- **Datasets:** CIFAR10-C and CIFAR100-C (15 corruptions, 5 severity levels; results at severity 5)
- Models: Pretrained ResNeXt-29 (CIFAR100-C) and ResNet-8 (CIFAR10-C).
- FL Setting: 20 clients, streaming test data in batches of 10.
- TTA Setups: TTA-grad and TTA-bn

Heterogeneity Simulation

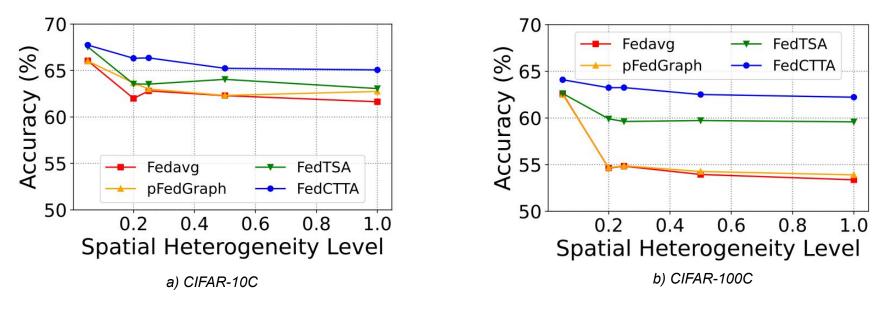
- **Spatial Heterogeneity (SH,):** Measures diversity among client data distributions.
 - NIID: $SH_{+} = 0.2$ (4 clusters)
 - IID: $SH_t = 0.05$ (single cluster)
- **Temporal Heterogeneity (TH**_i): Measures frequency of distribution changes in streaming data.
 - Constant at 0.02 for both scenarios.

Results

Method		N	ID		IID				
	CIFAR10-C		CIFAR100-C		CIFAR10-C		CIFAR100-C		
	TTA-grad	TTA-bn	TTA-grad	TTA-bn	TTA-grad	TTA-bn	TTA-grad	TTA-bn	
No-Adapt	58.47±0.19	58.61±0.17	30.22 ± 0.12	30.22±0.12	58.64±0.22	58.55±0.21	30.22 ± 0.12	30.22 ± 0.12	
Local	63.82 ± 0.31	64.65 ± 0.29	52.85 ± 0.32	55.99±0.34	63.96±0.33	64.79 ± 0.31	52.94 ± 0.31	56.05 ± 0.34	
FedAvg	61.15 ± 0.24	61.45 ± 0.23	51.63 ± 0.17	57.13±0.43	66.12 ± 0.26	67.41±0.27	62.54 ± 0.31	63.96±0.31	
FedAvg+FT	63.82 ± 0.27	61.45 ± 0.23	47.83 ± 0.58	57.13 ± 0.43	63.79 ± 0.30	67.41 ± 0.27	61.72 ± 0.59	63.96±0.31	
FedProx	61.68 ± 0.22	61.45 ± 0.23	53.00 ± 0.38	57.13 ± 0.43	66.12 ± 0.24	67.41 ± 0.27	62.33 ± 0.67	63.96±0.31	
FedAvgM	61.50 ± 0.25	61.37±0.19	52.31 ± 0.46	57.13±0.43	63.60 ± 0.28	67.41±0.27	54.66 ± 0.27	63.96±0.31	
MOON	61.58 ± 0.23	61.45 ± 0.23	54.26 ± 0.27	57.13 ± 0.43	66.05 ± 0.25	67.41±0.27	62.40 ± 0.23	63.96±0.31	
pFedSD	61.31 ± 0.21	61.45 ± 0.23	53.33±0.37	57.13 ± 0.43	66.14 ± 0.26	67.41±0.27	62.32 ± 0.33	63.96±0.31	
pFedGraph	62.38 ± 0.26	64.21±0.25	57.01 ± 0.38	58.73 ± 0.38	66.10 ± 0.29	64.42 ± 0.28	62.48 ± 0.30	58.75 ± 0.63	
LDAWA	61.85 ± 0.23	61.45 ± 0.23	53.61 ± 0.33	57.13 ± 0.43	65.92 ± 0.26	67.41 ± 0.27	62.37 ± 0.41	63.96±0.31	
FedTSA	63.39±0.27	66.19±0.26	58.03 ± 0.38	62.93±0.29	66.29 ± 0.28	67.51±0.27	62.62 ± 0.36	63.70±0.34	
FedCTTA	66.23±0.28	66.50±0.27	64.81±0.29	63.39±0.28	66.64±0.29	67.78±0.28	64.15±0.28	64.52±0.28	

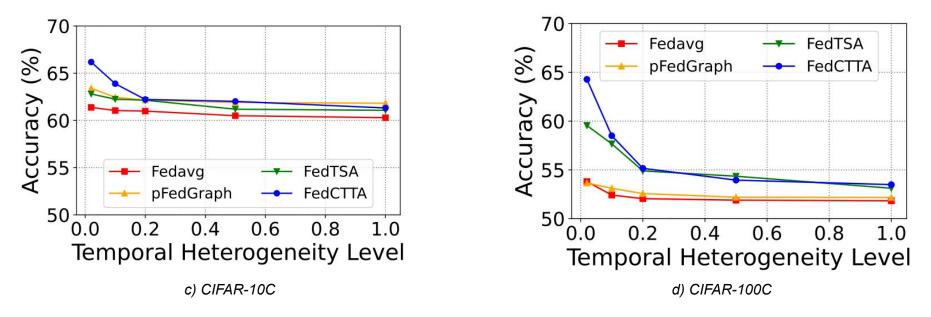
- FedCTTA consistently outperforms FedTSA and state-of-the-art FL methods
- FedCTTA consistently achieves higher accuracy while preserving privacy.

Robustness to Spatial Heterogeneity



- Accuracy declines for all methods with increasing SH,
- FedAvg shows the steepest drop. FedCTTA shows minimal performance degradation
- Demonstrates strong adaptability to non-IID client distributions

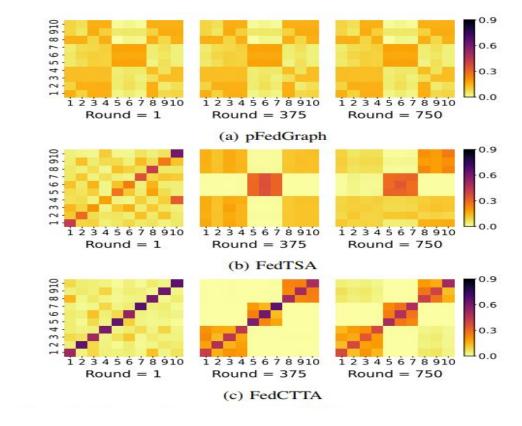
Robustness to Temporal Heterogeneity



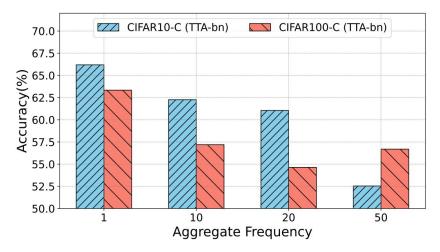
- Strong Robustness against temporal heterogeneity
- Strength lies in adaptive aggregation using temporal similarity
- Performs best when temporal shifts are gradual

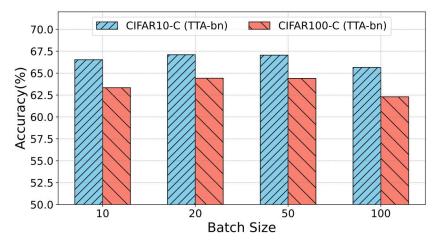
Collaboration Matrix Analysis

- 10 clients (CIFAR10-C), 3 groups by shift sequence.
- **pFedGraph:** Scattered, unstructured collaboration
- FedTSA: Initially self-focused, weak clustering
- FedCTTA: Naturally forms structured, adaptive clusters



Ablation Study - Aggregate Frequency & Batch Size





Aggregation Frequency:

- Higher interval negatively impacts accuracy.
- Frequent updates are crucial for performance.

Batch Size:

- Very low (10) or very high (100) sizes are suboptimal. Moderate sizes (20, 50) yield best results.
- **Too large**: frequent shifts, reduced performance.
- Too small: unstable updates.

Similarity Metrics & Auxiliary Data

TABLE IV: Comparison of test accuracy using distance measures for output logits and feature embeddings on CIFAR10-C dataset with the TTA-grad method under the NIID setting.

Data	O	utput Logi	Feature (Acc. %)			
Duiu	Euclid	KL-div	CE	Cosine	Euclid	Cosine
Random Noise	66.19	61.62	61.60	61.62	62.07	61.63
Selected (CIFAR)	65.92	61.65	61.64	61.63	61.80	61.63

Optimal Combination: Output logits from random noise samples + Negative Euclidean Distance.

Conclusion

- Enables adaptive inter-client collaboration without sharing raw data or features
- Demonstrates robust performance under spatial and temporal heterogeneity
- Efficient, scalable, and privacy-preserving

Thank You

Contact: rakibul@iub.edu.bd