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ABSTRACT

Land Use Land Cover (LULC) mapping using deep learning
significantly enhances the reliability of LULC classification,
aiding in understanding geography, socioeconomic condi-
tions, poverty levels, and urban sprawl. However, the scarcity
of annotated satellite data, especially in South/East Asian
developing countries, poses a major challenge due to limited
funding, diverse infrastructures, and dense populations. In
this work, we introduce the BD Open LULC Map (BOLM),
providing pixel-wise LULC annotations across eleven classes
(e.g., Farmland, Water, Forest, Urban Structure, Rural Built-
Up) for Dhaka metropolitan city and its surroundings using
high-resolution Bing satellite imagery (2.22 m/pixel). BOLM
spans 4,392 km2 (891 million pixels), with ground truth val-
idated through a three-stage process involving GIS experts.
We benchmark LULC segmentation using DeepLab V3+
across five major classes and compare performance on Bing
and Sentinel-2A imagery. BOLM aims to support reliable
deep models and domain adaptation tasks, addressing critical
LULC dataset gaps in South/East Asia.

Index Terms— Land Use Land Cover, Satellite Imagery,
Deep Learning, BD Open LULC Map, Segmentation

1. INTRODUCTION

Land use/land cover (LULC) changes have gained significant
attention due to rapid global ecosystem transformations [1].
Developing countries in South and East Asia are experienc-
ing substantial LULC changes. Grasslands, woodlands, bush-
lands, and other vegetation covers are being extensively con-
verted into agricultural and settlement areas to accommodate
growing populations. Land cover refers to the physical mate-
rials covering the earth’s surface, such as forests, mountains,
deserts, and water, while land use describes how humans uti-
lize land for socio-economic activities like farming and ur-
ban development. Monitoring LULC changes over time helps
understand geographical, socio-economic conditions, poverty
levels, and urban sprawl. Recently, deep learning methods
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Fig. 1: Comparison between World Bank and BOLM(ours)
Ground Truth (Here red color represents various kinds of
built-up, cyan represents forest/tree cover, yellow represents
bare land/meadow and blue represents water)

have effectively extracted LULC information from satellite
images [2]. In this paper, we introduce the BD Open LULC
Map (BOLM) to address the lack of LULC datasets for devel-
oping countries.

To effectively apply deep learning methods for LULC in
developing countries with similar topographies (Bangladesh,
Thailand, Indonesia, Malaysia, India, Sri Lanka), three ma-
jor challenges must be addressed. First, there is a scarcity of
LULC-annotated data. Large volumes of satellite images with
pixel-level LULC annotations are essential for training deep
models. Annotated datasets from developed countries [3, 4, 5]
often produce erroneous results when models are applied to
developing countries due to differences in building materi-
als, land characteristics, and cultural contexts. Furthermore,
UAV data collection, like in OpenEarthMap [6], is costly and
limited in developing countries. Thus, high-resolution (HR)
satellite LULC annotations are critically needed, especially
for Bangladesh.

Second, as shown in Table 1, most datasets from this re-
gion feature low-resolution images (10m, 15m, 30m), which
are inadequate for densely populated, unstructured urban ar-
eas. Low-resolution data and patch-based annotations induce
errors in deep learning models. For example, datasets from
India [7] lack sufficient resolution and detail for accurate
pixel-level LULC mapping. The World Bank’s urban map-
ping of Dhaka [11] lacks the necessary details for precise
annotations.
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Table 1: Summary of the LULC satellite datasets from developing countries

Dataset Name Region Source
Acquisition
Time

GSD
(Per Pixel)

Area
(Sq KM)

IndiaSat[7], 2021 India
Landsat-7, Landsat-8
and Sentinel-2 2016-2019 10, 15 m 162

OpenEarthMap[6],
2023

Africa, Asia, Australia,
Europe, USA
South America,
South Asia (Dhaka, Cox’s Bazar, Nepal Only)

UAV 2020 0.25m –0.5m 799

DynamicEarthNet[8],
2022

Africa, Australia, Europe, USA
South America, China,
South Asia (India), East Asia (Thailand)

Sentinel 1 & 2 2020-2021 3m - 10m 707

LandCoverNet[9],
2020

Africa, Asia, Australia,
Europe,North America
and South America

Sentinel-2 2018 10 m 12,905

Mauro et al.[10], 2020 Hanoi, Vietnam Landsat-5,7,8 1989-2019 30 m 3,050
World bank [11],
2021 Dhaka

QuickBird, Pleiades,
Landsat and Sentinel-2 2006,2017 5m-30m 1,034

BOLM(Ours) Dhaka Bing 2019 2.22 m 4,392

Third, many deep learning methods rely solely on RGB
channels achieving good performance compared to traditional
approaches [12]. However, HR RGB data is not frequently
updated in developing countries [13]. Conversely, satellite
data (e.g., Sentinel-2/3, Landsat) are regularly updated and
offer multi-spectral channels, which can be leveraged using
indices like NDVI, NDWI, and RVI [14]. Despite their lower
resolution, these channels can enhance LULC mapping when
combined with DL models. The key contributions of this pa-
per are:

• Introduction of the BD Open LULC Map (BOLM), a
high-resolution, pixel-by-pixel annotated dataset cov-
ering 4,392 sq km of Dhaka’s urban and rural areas,
using Bing satellite imagery (2.22 m/pixel).

• Benchmarking of state-of-the-art deep learning algo-
rithms (DeepLabV3+ [15]) on both low-resolution
(Sentinel-2A) and high-resolution (Bing) data.

• Comprehensive analysis of model performance using
different Sentinel-2A channels and indices (NDVI,
NDWI, RVI), and comparison with HR data results.

• Conclusive recommendations on the applicability of
BOLM dataset for developing countries in South and
East Asia, for both Sentinel and Bing/Google imagery.

2. EXISTING DATASETS AND LIMITATIONS

Several high-quality LULC datasets exist, mainly from de-
veloped countries. The Potsdam and Vaihingen datasets
[3] cover German regions with five classes: building, low-
vegetation, tree, car, and background. The Gaofen (GID)
dataset [5] spans China with classes like forest, built-up,
farmland, meadow, and water. MiniFrance [4] provide urban

and rural scene annotations for China and France. FloodNet
[16] includes ten LULC classes related to floods in Texas and
Louisiana.

In developing countries, India’s IndiaSat [7] use Sen-
tinel and Landsat imagery for land cover classification.
Africa’s Mpologoma Catchment dataset [17] (Uganda) and
Libokemkem district dataset [2] (Ethiopia) cover land changes
over time. LandCoverNet [9] offers global LULC data, while
a Hanoi study [10] tracks urbanization from 1989–2019.
High-quality, pixel-wise annotated LULC data is scarce in
developing regions, and existing datasets (Table 1) of Devel-
oping Countries have several limitations:

Most datasets use low-resolution imagery (10m–30m),
making it hard to distinguish small urban features like houses,
roads, and vegetation. Unlike structured cities, developing re-
gions lack clear zoning, complicating land cover classifica-
tion.

Deep learning models trained on one region often fail in
others due to geographic and cultural variations [18]. Dif-
ferences in building materials, landscapes, and urban struc-
tures cause domain shifts, requiring high-resolution (∼ 2m)
datasets with precise pixel-wise annotations.

LULC datasets from Bangladesh have coarse annota-
tions, leading to misclassified pixels and degraded model
performance. For instance, the World Bank’s urban map-
ping of Dhaka merges key categories (e.g., construction sites,
airports, industrial areas), covers only urban regions, and is
not publicly available. Figure 1 shows how finer annotations
improve classification accuracy.

3. DATASET CREATION
The study focuses on the Dhaka division, centered around
Dhaka city, covering a 117 km × 124 km region from
N24°23’04”, E89°57’26” (Upper Left Corner) to N23°22’13”,
E91°00’26” (Lower Right).



3.1. Sources of Satellite Data

This study utilizes two image sources: Bing imagery (2.22m/pixel)
for ground truth annotation and high-resolution segmentation,
and Sentinel-2A data for experiments using various band
combinations and index images as inputs.

Bing RGB: Bing provides high-resolution aerial imagery
(2.22m/pixel) at 17 zoom levels [19]. Acquired on April
20, 2019, the dataset has a 48906×47256 resolution in TIFF
(RGB) format. Figure 2 shows the full image, with the blue
rectangle marking the annotated area (Dhaka and surround-
ings) and the red rectangle highlighting the test region within
Dhaka city.

Fig. 2: (a) is the input image from the bing used and (b) is the
corresponding ground truth.

Sentinel-2A: Sentinel-2A data, acquired on April 11,
2019, at 04:38:29 UTC (Tile ID: ”L1C T45QZG A016175
20190411T043829”), includes 12 spectral bands with reso-

lutions from 10m to 60m per pixel. The red (band 2), green
(band 3), blue (band 4), and NIR (band 8) have 10m resolu-
tion, while Coastal Aerosol (band 1), Water Vapor (band 9),
and SWIR Cirrus (band 10) have 60m. NIR and SWIR bands
are at 20m resolution.

SWIR combinations help analyze moisture and distin-
guish minerals. False Color Infrared (FCI) (NIR, red, green)
aids vegetation detection, while Atmospheric Penetration
(ATM) (two SWIR, one NIR) enhances classification clarity
[20]. NDVI assesses vegetation health, RVI estimates vegeta-
tion water content, and NDWI detects water stress in plants,
with wetter vegetation yielding higher values.

3.2. Ground Truth Annotation Process

The Bing image (2.22m/pixel) covers 4,392 square kilometers
in Dhaka, totaling 891 million pixels. This area was annotated
into eleven LULC classes (see Table 4 in the supplementary
material).

The large Bing image (48,906 × 47,256 pixels) was di-
vided into 1,089 sub-images (1,500 × 1,500 pixels). The study
focused on folders 8 to 19, each containing 33 images. A

Fig. 3: Various Regions on the Dhaka Division

total of 24 annotators (two per folder) used eCognition soft-
ware and a rule-based approach to classify polygons. Multi-
resolution segmentation was applied, merging adjacent poly-
gons of the same class before exporting the final ground truth.
Figures 8 and 9 illustrate the process (see supplementary ma-
terial).

To ensure accuracy, training sessions covered eCognition
usage, rule-set creation, and segmentation. Experts clarified
class distinctions, and a tutorial video was provided for refer-
ence (footnote 1).

3.3. Annotation Validation and Data Reliability

To ensure annotation reliability, we followed a three-stage
validation process. In Stage 1, two annotator groups indepen-
dently labeled the dataset, with a pixel-wise agreement matrix
highlighting in Table 4 (details in the supplementary material)
disagreements in all classes except Brick and Road. The high-
est agreement was observed for the Forest class (95.24%),
while the Road class had the lowest (88.18%). Stage 2 fo-
cused on refining disagreement regions (200 × 200 pixels)
through manual corrections, significantly reducing inconsis-
tencies. Finally, Stage 3 involved GIS experts validating the
dataset, achieving over 99% agreement for most classes. The
expert-labeled pixels were adopted as the final ground truth,
ensuring high-quality annotations. All details are in the sup-
plementary material.

3.4. In Situ Visual Assessment

To enhance annotation reliability, an on-site validation was
conducted in the Dhaka Division. The team visited 13 di-
verse locations, covering urban, rural, agricultural, industrial,
and natural landscapes. Using a high-resolution camera, Gaia
GPS, and field notes, they compared dataset annotations with
real-world observations.

Land cover characteristics—including infrastructure, veg-
etation, water bodies, and farmland—were documented with
photographs and GPS coordinates for precise alignment. Fig-
ure 2 shows the visited locations, while Figure 3 presents sam-
ple images illustrating LULC variations.

1Annotation tutorial video: https://www.youtube.com/watch?
v=psQwvRDxuTo

https://www.youtube.com/watch?v=psQwvRDxuTo
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(a) Area Percentage of 11 Class

(b) Area Percentage of 6 Class

Fig. 4: Area Percentage of the 11 class and 6 class dataset.

3.5. Conversion from 11 Classes to 6 Classes

Due to class imbalance (Figure 4a), we merged eleven classes
into six broader categories (Table 4) for better balance in ex-
periments. Farmland, Water, and Forest remained unchanged,
while Urban Structure, Rural Built-up, Urban Built-up, and
Brick Factory were merged into Built-up. Meadow and
Marshland were combined into Meadow. The final class dis-
tribution (Figure 4b) is: Farmland (39%), Water (6%), Forest
(21%), Built-up (19%), Meadow (11%), and Unrecognized
(3.78%).

4. IMAGE PROCESSING FOR SATELLITE DATA

Sentinel-2A Index and Combination Images: Sentinel-2A
provides 12 spectral bands, which we combine for segmen-
tation tasks. Since different channels capture diverse land
textures, we utilize multiple combinations from Sentinel-2A
data. Index images are crucial for LULC classification. The
RGB representations of these index and combination im-
ages are shown in Figure 5. Given the varying resolutions of
Sentinel-2A channels, we upsampled them to 10m/pixel using
bilinear interpolation. The 3-channel index and combination
images, listed in Table 2, were generated using QGIS.
Bing RGB Image: The Bing image, captured at a 17-zoom

Table 2: Sentinel-2 Index and Combination RGB Channel
Formation

Image Type Channel-1 Channel-2 Channel-3
RGB B4(Red) B3(Green) B2(Red)
ATM B12(SWIR) B11(SWIR) B8(NIR)
FCI B8(NIR) B4(Red) B3(G)
SWI B12(SWIR) B8(NIR) B4(R)
NDVI NDVI NDVI NDVI
NDWI NDWI NDWI NDWI
RVI RVI RVI RVI

Fig. 5: Combination and Index images generated from
Sentinel-2 multispectral bands

level (2.22m/pixel), serves as a high-quality ground truth for
accurate LULC segmentation. Its high resolution enables pre-
cise annotation and improves model performance. However,
the large data size increases processing and training time. De-
spite this challenge, its clarity benefits both manual annota-
tion and deep learning-based segmentation

5. EXPERIMENTAL SECTION

Implementation details: For benchmarking, we utilized
DeepLabV3+ [15], an advanced version of DeepLabV3 with
an encoder-decoder structure and atrous convolution for im-
proved semantic segmentation. The input and ground truth
images are split into 513×513 patches for DeepLab V3+
training. Some ground truth regions are difficult to label
and remain unrecognized, with unrecognized pixels assigned
black in both input and ground truth. Training uses a sliding
window with 75% overlap in both directions, while testing
uses non-overlapping patches. The Dhaka city region (red
rectangle) served as the test set, while surrounding areas
(blue rectangle) were used for training showed in figure 2
. We computed IoU and F1 scores from confusion matrices
based on model predictions and ground truth for test image
pixels. Accuracy was not used due to potential bias from
imbalanced LULC class samples. The experimental settings
are as follows:



LULC with Index Images: Three-channel input images
are created using NDVI, NDWI, and RVI. Training images are
generated with a 513×513 sliding window, overlapping 75%
in both directions. The batch size is 8, and training runs for
25 epochs. Testing uses non-overlapping patches.

LULC with Channel-Combined Images: The same
sliding window approach is used for training, with a batch
size of 8 and 25 epochs, using DeepLabV3+. Testing is
performed without overlapping.

LULC with Full Bing RGB: The full Bing image is
used, following the same training procedure as above, with
DeepLabV3+ and no overlap during testing.

6. RESULTS

6.1. Index images

Among three index images, NDWI achieves the highest IoU
(0.20) and F1 score (0.32) for forests and performs best for
water (IoU: 0.24, F1: 0.51). NDVI outperforms for built-up
and farmland, while RVI has a slightly better F1 score for
meadow. On average, NDVI provides the best segmentation
for five classes (Avg IoU: 0.30, Avg F1: 0.45). Built-up, farm-
land are segmented with high precision using index images.

Table 3: Scores for 5 classes of all the image types.

Metric Forest Built-Up Water Farmland Meadow Avg

NDVI IoU 0.17 0.52 0.68 0.35 0.51 0.30
F1 0.17 0.68 0.27 0.51 0.50 0.45

NDWI IoU 0.20 0.38 0.24 0.34 0.28 0.28
F1 0.32 0.55 0.38 0.51 0.50 0.43

RVI IoU 0.13 0.50 0.17 0.31 0.36 0.29
F1 0.22 0.66 0.29 0.47 0.52 0.43

ATM IoU 0.17 0.56 0.29 0.48 0.19 0.33
F1 0.29 0.72 0.45 0.64 0.31 0.48

FCI IoU 0.20 0.53 0.30 0.46 0.17 0.33
F1 0.33 0.69 0.45 0.62 0.29 0.47

SWI IoU 0.22 0.56 0.32 0.46 0.22 0.35
F1 0.35 0.71 0.48 0.62 0.37 0.50

SentinelRGB IoU 0.18 0.54 0.30 0.46 0.25 0.34
F1 0.30 0.70 0.46 0.63 0.40 0.49

BingRGB IoU 0.33 0.58 0.48 0.57 0.26 0.44
F1 0.49 0.73 0.65 0.72 0.41 0.60

For the farmland class, NDVI, RVI both achieved an F1
score of 0.79, but NDVI had a higher IoU (0.35). As NDWI
detects water/moisture content, its superior water detection
(IoU: 0.24) was expected. NDVI performed best for built-up
areas (IoU: 0.52, F1: 0.68), while RVI was best for meadow
(IoU: 0.52, F1: 0.68). NDVI and RVI had the same average
F1 score, but NDVI had the highest average IoU (0.30).

6.2. Channel Combination Images

We analyze the results of combined images for Sentinel-2A
from Table 3. SWI outperforms ATM in Forest segmentation
with an IoU of 0.22. For Built-up, both ATM and SWI achieve

an IoU of 0.56, but SWI attains higher accuracy. Water re-
gions are better detected with SWI, while ATM performs best
for Farmland IoU. Meadow segmentation achieves the high-
est IoU (0.22) with SWI. On average, SWI attains the highest
IoU (0.35) and F1 score (0.50) across all classes.

SentinelRGB exhibits slightly lower performance than
SWI. Built-up and Farmland are accurately segmented across
all compositions, with ATM achieving the best IoU (0.56) and
F1 (0.72) for Built-up and IoU (0.48), F1 (0.64) for Farm-
land. Forest and Water segmentation is superior with SWI,
while Meadow achieves IoU (0.25) and F1 (0.40) with Sen-
tinelRGB. Overall, SWI achieves the best average IoU and
F1 score among four compositions and three index images
derived from Sentinel-2A data.

SWI scores the highest in Forest (0.22 IoU). Built-up IoU
is identical for ATM and SWI. SWI leads in Water segmen-
tation, ATM in Farmland, and RVI in Meadow. Combination
images generally outperform index images due to richer infor-
mation across three channels. Though SentinelRGB is widely
used for LULC, it does not surpass most combination images.
Index images, being single-channel, contain less information,
making them less effective than combination images.

6.3. Bing RGB Image

We describe the results from BingRGB, where the experiment
includes training and testing using the full RGB image cap-
tured by the Bing satellite. The model with a full Bing RGB
image outperforms the rest by significant margins. The aver-
age IoU is 0.44, and the average F1 score is 0.60. Not only in
averages, but BingRGB also segments all five LULC classes
more accurately compared to other models.

7. CONCLUSION

This paper presents high-resolution pixel-wise Land Use
Land Cover (LULC) ground truth annotations for the Dhaka
metropolitan region, covering 4,392 square kilometers. The
BOLM dataset includes eleven LULC classes across urban
and rural areas. Baseline experiments using Sentinel 2A and
Bing satellite imagery for five major LULC classes show that
Bing’s high-resolution imagery (2.22m/pixel) consistently
outperforms Sentinel 2A. However, Bing is limited to RGB
channels and lacks free monthly availability in developing re-
gions. Sentinel 2A, with multi-channel data including SWIR,
remains valuable when high-resolution imagery is unavail-
able. Our findings highlight the trade-off between precision
and accessibility, suggesting Bing/Google/ESA imagery for
urban monitoring and Sentinel 2A for periodic applications
like crop monitoring.



8. LICENSING AND ETHICAL CONSIDERATIONS

This dataset has been made available online here under the
Creative Common (CC) license: https://doi.org/10.
7910/DVN/LLR3RR. Custom codes were developed to pro-
cess the dataset, including converting RGB images into index
format for the model. To improve performance and reduce
confusion, unknown label regions are projected onto the in-
put image. If accepted, the code link will be provided.
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Supplementary Materials
9.1. Analysis of Normalized Confusion Matrix

The normalized confusion matrices in Figures 11a–12 illus-
trate the performance of DeeplabV3+ on different datasets.
BingRGB achieves the highest accuracy across all classes,
with an average IoU of 0.44 and F1 of 0.60. The model strug-
gles with inter-class confusions, particularly between Forest
and Built-up areas, due to their proximity in urban settings.
Water is often misclassified as Farmland due to similar colors
in urban environments, and Meadow remains the most chal-
lenging class.

SentinelRGB achieves high accuracy for Built-up (84%)
but performs poorly in Forest (25%) and Farmland (53%) due
to lower resolution. Sentinel-2 ATM improves Farmland and
Water classification but struggles with Forest and Built-up,
likely due to its spectral properties emphasizing atmospheric
penetration. SWI achieves overall better performance than
RGB but still struggles with Meadow misclassification due
to resolution differences. FCI enhances Forest, Built-up, and
Water segmentation but performs worst for Meadow, misclas-
sifying it as Built-up due to spectral similarities in dry land
areas.

Overall, combination images provide richer information,
outperforming single-channel index images, while BingRGB
delivers the highest segmentation accuracy.

9.2. Annotation Validation and Data Reliability

To ensure the reliability of the annotation, we have followed
a three-stage validation process.

In stage 1, two groups of annotators independently an-
notated the dataset at the pixel level. A pixel-wise agree-
ment matrix was calculated to compare their annotations (Ta-
ble 4). Disagreements were observed in all classes except
the Brick and Road class. Notably, the Water class showed
confusion with Farmland (3.4%) and Marshland (5.66%), as
floating weeds in ponds and lakes often caused misclassifica-
tion. The Farmland class also exhibited overlap with Roads,
Rural Built-up areas, Marshland, and Meadow, particularly
when crops were young or harvested.

Fig. 6: Disagreement in annotation between Group 1 and
Group 2 members. Some of the water areas have been missed
by Group 2



Fig. 7: Disagreement in annotation between Group 1 and
Group 2 members. One of the group 1 member annotated the
long thin region as water (blue), whereas one group 2 mem-
ber marked it as road. In Bangladesh, there are a lot of places
where roads or rivers pass through vast farmland areas.

For the Forest class, minor confusion occurred mainly
with Rural Built-up areas, as trees often surround houses
in rural regions. This resulted in a 3.93% disagreement.
The highest agreement was observed for the Forest class
(95.24%), while the Road class had the lowest agreement
(88.18%). Figures 6 and 7 illustrate these disagreement is-
sues. Many discrepancies were resolved in the second stage,
with expert verification finalizing the annotations.

In stage 2, disagreement regions from stage 1 were iso-
lated for detailed examination. Special attention was given
to these regions (200 × 200 pixels), where annotator groups
1 and 2 disagreed. Each case was reviewed in discussions
with the respective annotators. Using Photoshop on an iMac
(24-inch screen), annotators manually refined the overlapping
class boundaries at the pixel level.

Tables 3 and 4 of the supplementary material show the
revised agreement percentages. After stage 2, the disagree-
ment percentage was significantly reduced, with the highest
remaining disagreement at 4.2%.

In stage 3, we sought validation from GIS experts with ex-
tensive experience in LULC annotations. Initially, the agreed-
upon portions of the dataset—where both annotator groups
reached a consensus—were selected. To further verify ac-
curacy, 10% of each class’s agreed portion was given to the
expert group for evaluation. After expert annotation, compar-
isons showed that all classes except the Urban Structure class
had above 99% agreement, with Urban Structure at 98.585%.
Given this high level of agreement, the entire agreed portion
from groups 1 and 2 was accepted without further verification.
Table 5 of the supplementary material details the agreement
percentages between the annotator groups and experts.

Next, the areas of disagreement between group 1 and
group 2 were fully annotated by the experts. Table 6 of the
supplementary material presents the agreement/disagreement
statistics between annotator disagreements and expert anno-
tations. The expert-labeled pixels from Table 6 were adopted
as final ground truth annotations. This stage marked the com-
pletion of the dataset, with the distribution of pixels across
eleven classes illustrated in Figure 4a.



Fig. 8: Segmenting image into small polygons

Fig. 9: Exporting after fully labeling the ground truth



(a) Sentinel-2 ATM (b) Sentinel-2 SWIR

Fig. 10: Normalized confusion matrix of Sentinel-2 ATM and SWIR combination images.

(a) Bing RGB (b) Sentinel-2 RGB

Fig. 11: Normalized confusion matrix of Bing RGB and Sentinel-2 RGB images.



Table 4: Stage-3: Group-1 and 2 disagreements vs. Expert annotation in number of pixels

Expert
Total Pixels Selected
for Validation
(100% of 1 and 2
Disagree)

Unrecognized Water Farmland Forest
Urban
Structure

Brick
Factory Road

Urban
Builtup

Rural
Builtup Marshland Meadow

244,452

B
ot

h
G

ro
up

1
an

d
G

ro
up

2
D

is
ag

re
e Unrecognized 243,437 37 49 244 24 0 0 122 244 49 244

1,058,694 Water 106 1,049,695 0 0 212 529 0 1,588 5,293 1,059 212
9,250,035 Farmland 925 1,850 9,172,335 32,375 9,250 13,875 0 0 3,700 11,100 4,625
1,901,067 Forest 380 190 6,844 1,878,254 3,802 951 2,852 0 4,753 2,471 570

169,327
Urban
Structure 254 0 847 169 165,906 85 339 508 339 847 34

47,042
Brick
Factory 0 235 0 0 24 46,680 0 56 47 0 0

185,121 Road 19 0 0 0 185 0 183,992 926 0 0 0

1,532,498
Urban
Builtup 613 0 0 0 6,130 4,597 10,727 1,510,276 153 0 0

2,495,021
Rural
Builtup 3,493 2,246 3,743 1,248 0 0 0 749 2,483,544 0 0

322,169 Marshland 32 1,289 967 644 0 0 0 0 0 319,108 129
3,149,345 Meadow 1,575 1,249 7,495 3,123 0 0 0 0 3,123 11,868 6,216,219

Fig. 12: Normalized confusion matrix of Sentinel-2 FCI im-
age
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